
PAX meeting May 2023  

Task based parallelism and 
asynchronous MPI in SWIFT

Peter W. Draper, Alastair Basden and the SWIFT developers
https://www.swiftsim.com/



PAX meeting May 2023  

SWIFT
SPH With Inter-dependent Fine-grained Tasking

SWIFT is an open source hydrodynamics and gravity code for astrophysics and cosmology. 
https://www.swiftsim.com & https://gitlab.cosma.dur.ac.uk/swift/swiftsim / 

https://github.com/SWIFTSIM
It is currently used to run simulations of astrophysics objects, such as planets, galaxies and 

very large cosmologies. 

https://www.swiftsim.com/
https://gitlab.cosma.dur.ac.uk/swift/swiftsim/-/tree/master
https://github.com/SWIFTSIM


PAX meeting May 2023  

Task based parallelism
● SWIFT uses an internal task scheduling system based on pthreads

● allows lower level control than OpenMP
● Computation is split into discrete tasks

● operating on a hierarchy of grid based cells populated with particle data, either 
singly or in pairs.

● Tasks are scheduled when data can be locked and have no unmet prerequisites.

 



PAX meeting May 2023

MPI and task based parallelism
Communications between compute nodes are scheduled, superficially like normal tasks, 
using asynchronous calls to MPI to maximise the overlap between communication and 
computation.



PAX meeting May 2023

MPI and task based parallelism (cont)

● Only data which is needed for intra-cell interactions (pair tasks) needs to be 
communicated. 

● Foreign cells on MPI ranks provide a halo of cells around the local ones. 
● Effectively read-only copies. 
● It is the job of the MPI tasks to maintain the content of these foreign cells.

MPI tasks are bound to a single grid cell, so they send or receive different 
flavours of particle data or other metadata of that cell only.



PAX meeting May 2023

Task plots for 3 (of 8) ranks

 MPI ranks
● Task plots from a 

single step. 
● Each block is an 

MPI rank
● Each with 16 

threads
● The different colour 

segments show the 
time taken by tasks.

● They do not 
complete together
● Imbalance in the 

loads, but clearly 
the ranks are kept 
busy.



PAX meeting May 2023

How is this implemented

The MPI tasks are implemented using three MPI calls:

● MPI_Isend()
● MPI_Irecv()
● MPI_Test()

MPI_Isend() and MPI_Irecv() are used when a task is enqueued, that is ready to 
run, so all its prerequisites are satisfied, that is tasks that need to run before it 
have done so. MPI_Test() checks when either of these operations has completed, 
at which point the real task runs and unlocks its dependencies and the transferred 
data can be used by waiting tasks.



PAX meeting May 2023

void enqueue(struct task *t) {
    if (t->type == task_type_send) {
      MPI_Isend(t->data, &t->req);
    }
}

void lock(struct task *t) {
    if (t->type == task_type_send) {
       int flag = 0;
       MPI_Test(t->req, &flag);
       return flag;
    }
}

thread main() {
   while (true) {
      if (lock(t) == true) {
         /* Run task to handle data. */
      }
   }
}

The use of MPI calls in the task system of 
SWIFT In a nutshell.

When ready to be queued an MPI_Isend() is 
initiated and a data lock to run the associated 
task is refused until the data is reported as 
offloaded by MPI_Test().

Note offloaded isn’t the same as sent, it just 
means the local data is no longer needed by 
MPI and can be modified once more.

A similar arrangement is used for MPI_Irecv(). 
This should ideally be initiated ahead of the 
MPI_Isend() and when MPI_Test() reports that 
done, the message has really been received 
and the data can be used by waiting tasks.

MPI calls in a nutshell



PAX meeting May 2023

Disclaimer

Although only three MPI calls are used in the task system, in fact a number of 
other MPI calls (synchronous, asynchronous and collectives) are used when 
reading in and writing out data, as well as when constructing and communicating 
the grid cells and their initial contents, and also when data needs to have the MPI 
rank holding it changed. That occurs when particles drift out of their cell and when 
a domain decomposition is needed to maintain a good load balance. These are 
not addressed here.



PAX meeting May 2023

Multiple time stepping
● SWIFT avoids work by not interacting every particle at every step

– Only those whose dynamics require it (e.g. fast moving ones, etc)
● Not all time steps are the same

– Huge dynamic difference in the computation required
– Less computation for the communication to overlap with

● Communication can dominate for steps when there is little work to do



PAX meeting May 2023

SWIFT workload
● X axis: number of 

particles updated in 
a step. (a proxy for 
work)

● Y axis: time taken.
● Huge dynamic 

range (log-log), 
some steps with a 
few, some with 
billions.

● The strong linear 
regime scales well

● Overheads 
dominate for 
smaller steps
● eg MPI latency



PAX meeting May 2023

Multiple ranks with limited computation

With limited computation not all 
threads are busy for the 
complete step. We seem to 
have a lot of dead time.

Suspects are balance, lots of 
short tasks (too small to 
render) or time taken for MPI 
or is MPI progression playing a 
part?



PAX meeting May 2023

Mystery of what is happening.
● Difficult to work out the impact of MPI on the previous task graphs

– No direct timing of data transfers (just with the MPI calls are made)
– SWIFT task ordering is non-reproducible
– Profiling doesn’t help much

● Internal logger implemented
– Accurate times of data sent and received (and data size)
– Obvious that MPI is busy during the “dead” times



PAX meeting May 2023

MPI logger: data in flight

Data in flight during a 
step for a number of 
MPI ranks. This is the 
sum of data that have 
not yet been 
“received”

Received is not 
reported as 
arrived/complete by 
MPI_Test(), so could 
be delayed by 
computation from any 
active tasks, but there 
are none of those in 
later times.



PAX meeting May 2023

MPI logger: send and receive times
Plot of the time a message was sent 
against the time it was received.

Clearly it takes a long time to just process 
all the messages and most are dispatched 
quite early (this makes sense from the 
perspective of the task graphs). 

The puzzle here is that the network is not 
bandwidth limited as we can see next.



PAX meeting May 2023

MPI logger: data rate per rank
The estimated 
data rate per rank.

The expected 
peak here is 
around 25Gbit/s 
(one lane of a 4 
lane 100Gbit/s 
card), which we 
achieve at first.



PAX meeting May 2023

SWIFT step simulator
● Communication times driving step dead times
● Hard to investigate in SWIFT
● So a play-back tool developed

– Plays back MPI message exchange using the output from the MPI logger
– Allows investigation of added delays, number of threads, MPI tuning etc.
– But didn’t help!



PAX meeting May 2023

SWIFT step simulator: send and receive times.
Similar to before when we time the 
MPI_Isend() and MPI_Irecv() calls.

Once again we see the delay in the 
initiation of the send and its receipt.

This time we have no other tasks to worry 
about and can feed in the sends at any 
rates we want.



PAX meeting May 2023

SWIFT step simulator: scaling plot
● You can also use the simulator to 

explore interesting questions like what 
happens when you keep the number of 
messages fixed, but scale their sizes.

● In this case “all” is the SWIFT captured 
log information and “by2” halves the 
data size and “by4” quarters it.

● Exchanging large packets clearly 
scales well, but small messages reveal 
an underlying latency.

● (Note plot is log-log, this tool is also 
useful to test MPI setups and the 
capabilities of new fabrics)



PAX meeting May 2023

RDMA step simulator

Another way to explore the what is happening to the expected performance is to 
remove MPI completely. To do this an RDMA version of the SWIFT step simulator 
was developed (not recommended). 

This reveals a different send and receive behaviour and is somewhat faster to 
exchange the same data.



PAX meeting May 2023

RDMA step simulator: send and receive

Now we have consistent send and receive 
times with just a small amount of scatter.

In principle this should be similar to MPI, 
they both use asynchronous exchanges (as 
you can see from the small amount of 
scatter).

Leaves you wondering what MPI is getting 
up to.



PAX meeting May 2023

RDMA SWIFT

● All the previous doesn’t help directly with SWIFT, just gives an indication that 
communication is probably at the heart of the problem. 

● Some of which could be down to the asynchronous MPI implementation (the 
effect of all that scatter). 

● Although to be fair the speed up from RDMA isn’t huge. So back to SWIFT.

● Using the code ideas from the RDMA step simulator an RDMA layer to replace 
the MPI calls in SWIFT was created, this is based on different communication 
model, which is essentially synchronous on the send side and asynchronous 
on the receive side (a one-sided technique), the advantage to that is we can 
time the exchanges and associate the time with a task… A long time passes…



PAX meeting May 2023

Task plot from RDMA SWIFT

So we now see that the dead time is taken with the data exchanges. The light 
green is time taken to send. But after all this work, RDMA SWIFT is no faster than 
the MPI version, in fact they are very similar.



PAX meeting May 2023

SWIFT RDMA: further explorations.
● Oddly receives also take some time, not just the sends. But they have very 

little to do, in this version just move the data into the local particle buffers. 
● Asynchronous MPI will also move the data into local registered memory 

before RDMA can move it to the remote side. 
– This is one of the reasons on-node memory use increases when using 

asynchronous MPI (that increase can be a significant overhead and not 
necessarily controllable). 

– It is also one of the jobs that polling MPI_Test() does and causes the 
required MPI progression, which obsesses the compute bound world.



PAX meeting May 2023

SWIFT RDMA: further explorations.

Anyway, the receive task timings suggest we could have an issue with moving 
memory into and out of the buffers used by RDMA: Could it be that simple after all. 
Time to add some new tasks that split memory movement into work for multiple 
threads.



PAX meeting May 2023

SWIFT RDMA: multiple memory copies

RDMA 
task 
plots 
from a 
normal 
run.



PAX meeting May 2023

SWIFT RDMA: multiple memory copies

Now with 
tasks that 
copy 
using 
many 
threads 
ahead of 
time.



PAX meeting May 2023

SWIFT RDMA: multiple copies

Inspecting the task plots it is clear that copying memory into and from the RDMA 
buffers using special tasks is faster, at least for the types of step we have been 
looking into. Sadly for steps that already overlap well with compute, the story isn’t 
as good and the additional work makes those go a little slower. That makes sense 
we are already using all the memory bandwidth.

So the main issue is not making use of the full memory bandwidth of the nodes. 
So not MPI as such, although it is playing its part in hiding this detail. This could 
suggest that our effective memory model isn’t good for these sorts of messaging, 
and it would be better to directly share the memory with RDMA and avoid this 
overhead. That is a job for the next generation of code.



PAX meeting May 2023

Progress for MPI SWIFT?

Using some of these improvements in MPI SWIFT isn’t straightforward because 
MPI hides the memory movements internally. Probably the best we can do it look 
at splitting the sends into smaller parts, i.e. more tasks, but tests don’t show much 
improvement, probably because of how the overheads work out...



PAX meeting May 2023

Node memory bandwidth.

Using all the 
cores to copy 
isn’t always a 
good idea 
either…

Strong NUMA 
and page 
effects.



PAX meeting May 2023

Node memory bandwidth.



PAX meeting May 2023

Future progress
● So perhaps the best we can easily do is wait for better hardware. 
● We have faster fabrics

– Although no improvements in latency
● Cards with increasing capabilities

– Although we still need to get the data to them
● CXL - sharing memory directly using composability, if you wanted to break 

down the MPI memory model. 
● The upside of MPI is that it hides details of the communication, so we can use 

tcp, shared memory etc., so that makes it a hard route to choose.



PAX meeting May 2023

Future possibilities with a shared-memory fabric

● Using CXL to share a bank of RAM between different nodes

● Hopefully MPI would realise the SHM communicator would be best

● Reduces latency by ~3x over a NIC



PAX meeting May 2023

Full task graph


	Slide 1
	Slide 2
	Slide 3
	MPI and task based parallelism
	MPI and task based parallelism (cont)
	Task plots for 3 (of 8) ranks MPI ranks
	How is this implemented
	Slide 8
	Disclaimer
	Multiple time stepping
	SWIFT workload
	Multiple ranks with limited computation
	Mystery of what is happening.
	MPI logger: data in flight
	MPI logger: send and receive times
	MPI logger: data rate per rank
	SWIFT step simulator
	SWIFT step simulator: send and receive times.
	SWIFT step simulator: scaling plot
	RDMA step simulator
	RDMA step simulator: send and receive
	RDMA SWIFT
	Task plot from RDMA SWIFT
	SWIFT RDMA: further explorations._clipboard0
	SWIFT RDMA: further explorations.
	SWIFT RDMA: multiple memory copies _clipboard0
	SWIFT RDMA: multiple memory copies
	SWIFT RDMA: multiple copies
	Progress for MPI SWIFT?
	Node memory bandwidth.
	Node memory bandwidth.
	Future progress
	Slide 33
	Full task graph

