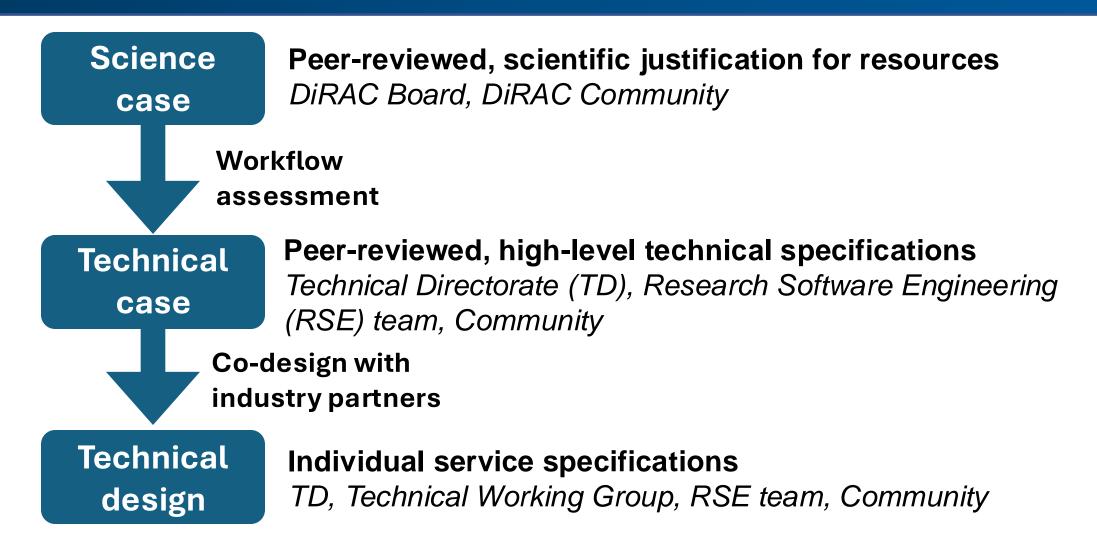
The DiRAC-4 design process: from science to services

Mark Wilkinson Director, STFC DiRAC HPC Facility

> DiRAC-4 Design Workshop York, 20th March 2025


Science and Technology Facilities Council

Dirac

Introductions

- Technical Directorate
 - In-person: Alastair Basden (Co-Chair), Antonin Portelli (Co-Chair), Kieran Leach, Jeremy Yates
 - Remote: Biagio Lucini
- Technical Working Group
 - In-person: Paul Walker
 - Remote: Wojciech Turek
- RSE team
 - In-person: Simon Burbidge (Co-lead), Ilektra Christidi (Co-lead), Mashy Green, Gokmen Kilic, Kacper Kornet, Miren Radia
 - Remote: Asif Muhammad

DiRAC Co-design Process – a multi-stakeholder partnership

• Community involved in all three phases of the co-design process

Co-design benefits & the importance of people **DiRAC**

- Investment in people is vital for productive HPC services
- DiRAC services require specialist technical support for hardware and users
- RSE team supports code improvement and re-factoring, energy efficiency, co-design, procurement & training

Evolution of Grid code (Boyle et al.) performance on Tursa relative to Tesseract

Stage	1 node	% inc.	16 nodes	% inc.	speed up 512 tess	
Measured	9.2	-	5.3	-	1.1	
Committed	9.2	-	5.83	10%	1.22	
Acceptance	9.65	5%	6.15	16%	1.28	
Commissioning	12	30%	8.8	66%	1.83	James
Peak	12.9	40%	9.9	87%	2.06	Richings et al.

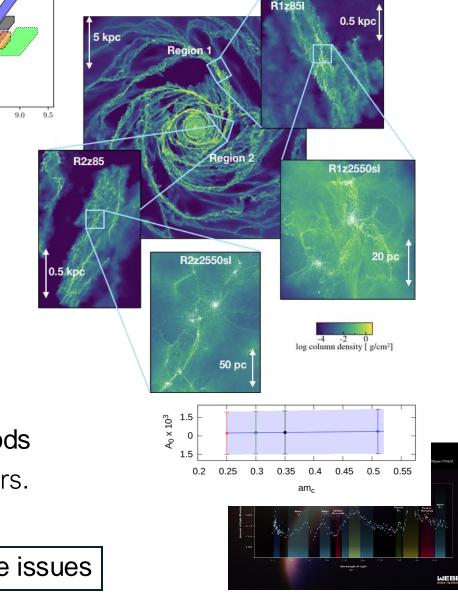
- Tursa Extreme Scaling service (DiRAC@Edinburgh) provides ~9x the performance of its CPU-based predecessor for lattice QCD codes but uses just 0.8x the power.
- Cosma8 Memory Intensive service (DiRAC@Durham) is 4x more efficient for cosmological simulations than comparable systems in Europe DiRAC services allow us to remain internationally leading
- Net Zero: Clocking down Tursa GPUs: ~15% energy saving with only ~5% performance loss for Grid code

DiRAC Science Programme 2024-28

Coma Cluster

HPQCD'19

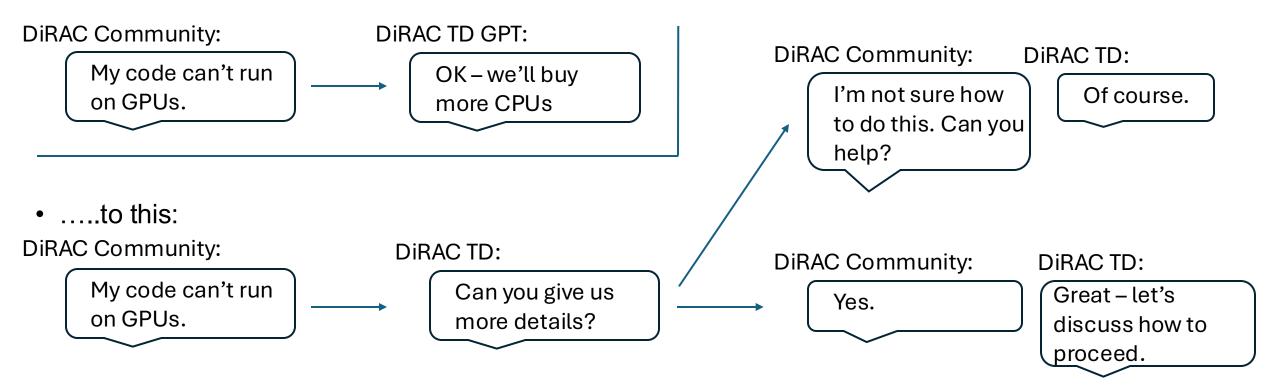
7.0


7.5 8.0

 $|V_{td}|$ [10⁻³]

8.5

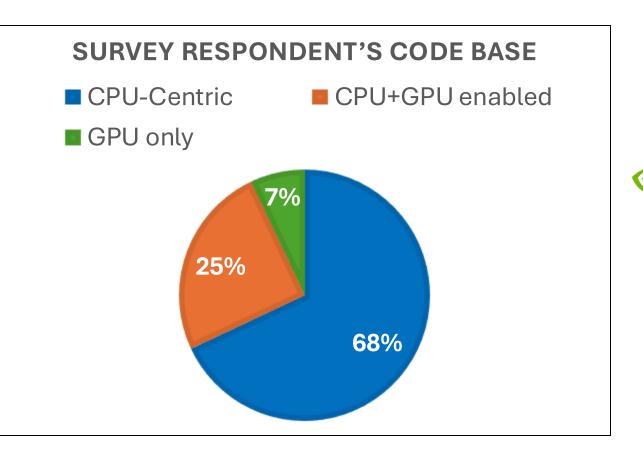
BBC/UKOCI


- Capability calculations include:
 - Galaxy formation
 - Lattice Quantum Field Theory
- Data Intensive calculations:
 - Gravitational waves
 - Gaia modelling
 - Precision cosmology
 - Planetary atmospheres
- Data challenges growing rapidly
 - Individual simulations generate 10Pb+
- Increasing use of AI/ML techniques to enhance simulation methods
 - At least 50% of fields are using or exploring AI over next 4 years.
 - DiRAC simulation data can also be used to train AI models.
- Action: check science case for accuracy tell us now if there are issues

Dirac

"Trust, but verify" Evidencing the DiRAC-4 technical case

- Evidence-based development of compute services is at the core of DiRAC's design philosophy
- The case for DiRAC-4 will be carefully scrutinised by funders (STFC, UKRI DRI, DSIT) and must be as robust as possible
- Assertions made without data to back them up will undermine the whole case
- Need to move conversations from this......


GPU Feasibility studies

- New activity proposed and led by the DiRAC RSE team with approval from DiRAC Board
- 3-month RSE engagements to explore GPU
- Reports will
 - 1. Identify blockers
 - 2. Determine what is required to overcome these
 - 3. Estimate effort required
- Reports will be technically specific about algorithmic and/or implementation issues which need to be addressed to allow a move to GPU
- Mix of targeted interventions by DiRAC and call for proposals
- Will be used to quantify levels of effort required for code re-factoring across the community
- Goal: significantly increase the fraction of code base that is GPU ready prior to any DiRAC-4 deployments
- More information on this call will be available soon
- Question for today: if a GPU version of your code is possible in 5 years, what would make it possible in 2 years?

DiRAC Training support

DiRAC User Survey 2024

DiRAC Performance Portability Training Programme

- Currently under development
- Industry partners:

Broad overview of different GPU pathways available

Advanced OpenMP and introduction to HIP

intel.

Hardware agnostic approach to porting code with oneAPI

www.dirac.ac.uk/training

Dirac

Today's workshop

- **Goal:** identify remaining gaps in evidence base and identify ways to gather the required information
- NB: Main focus today is *not* GPU/CPU
 - We need more quantitative information to progress this discussion
- Areas for discussion today:
 - Constructing the DiRAC-4 Technical Case
 - Scaling requirements
 - Requirements for RAM and storage
 - Post processing, user-centric services, and data management
 - Information gathering to evidence requirements
- Enjoy this opportunity to shape the future of DiRAC computing and the UKRI Digital Research Infrastructure....