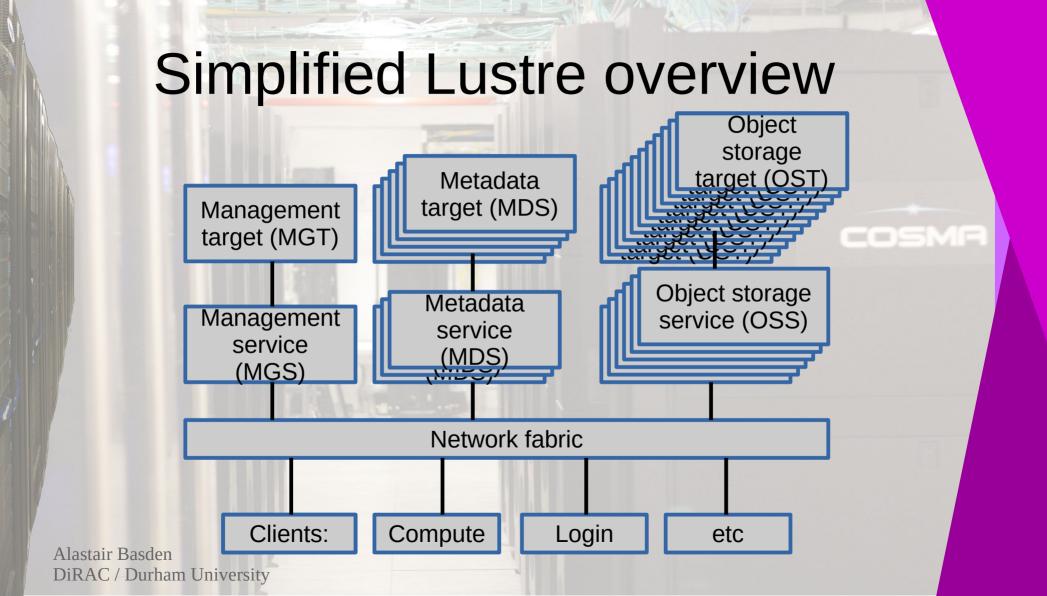
Lustre at Durham

Lustre User Group meeting May 2024 Durham HPC Days Alastair Basden DiRAC / Durham University


HPC at Durham

- University service: Hamilton
- EPSRC service: BEDE
- DiRAC node: COSMA

• All use Lustre

Introduction to COSMA

- The DiRAC Memory Intensive node at Durham
 - STFC funded
 - 3 other DiRAC sites (Leicester, Cambridge, Edinburgh)
 - All using Lustre DDN, HPE, Cray ClusterStore and Community

Lustre on COSMA

• 8 Lustre systems:

- Serving 3 HPC services
 - COSMA5 (Internal ICC/Physics system)
 - COSMA7 (DiRAC, 2018)
 - 4 Lustre file systems (1 almost-retired)
 - COSMA8 (DiRAC, 2021, 2023)
 - 2 Lustre file systems
- And 1 other almost-retired system
 - For which the compute no longer exists
- All based on community Lustre 2.12.6

COSMA5 (~2012)

/cosma5 serves the ~300 node COSMA5 cluster

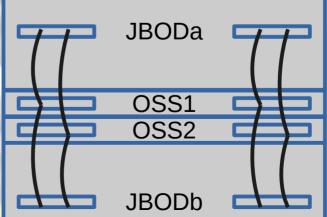
- 1.5PB, Available read-only elsewhere
- Installed in 2019 to replace the ageing original GPFS storage
 - Compacting 2.5 racks into 12U
- 2 servers (Dell R640)
 - 1 combined MGS, MDS, OSS (1 MDT)
 - 1 OSS

- 1 with 84x 12TB drives, 1 with 84x 16TB drives
- 14 OSTs
- ZFS throughout
- No High Availability
 - If the MGS/MDS server fails, downtime required
 - If the OSS server fails, the OSTs can be migrated to the other server

COSMA6 (~2012)

DELLEMO

- /cosma6 served the now-retired COSMA6 cluster
 - ~500 nodes
 - 2.6PB
- 6 servers, Dell R640
 - 2 MDS, 4 OSS (paired)
- 4 ME484 JBODs (each 84 x 12TB drives)
 - 28 OSTs, ZFS
- 1 ME4024 raid controller for MDTs
 - 2 MDTs, ldiskfs


ME484 JBOD aside

- SAS channel balance non-optimal
 - 4 SAS channels
 - 2 with 14 drives, 2 with 28 drives
 - This leads to a natural OST size of 12 drives

OSS to JBOD cabling

- We cable the OSSs in High Availability pairs:
 - 2 JBODs are each connected to 2 OSSs
 - 4 SAS cables from each server (2 into to each JBOD)
 - Redundancy (multipath) for each SAS card and JBOD interface module

COSMA7 (~2018)

- 4 storage systems, two entering retirement
 - 3 share the same MDS and 20 OSSs
 - /cosma7old (3PB)
 - 54 OSTs
 - /madfs (700TB)
 - 12 OSTs
 - Idiskfs throughout, 8TB drives
 - /snap7 (460TB)
 - 160 OSTs (3.2TB NVMe)
 - R640 servers, MD3460 arrays (controllers and JBODs)
 - /cosma7 is a new replacement for /cosma7old
- Serving the 452 node COSMA7 cluster
- No metadata High Availability (single server)

/snap7

- Fast checkpointing storage
 - Based on 160 3.2TB NVMe drives in 20 OSSs
 - 160 OSTs
 - Fastest storage in Europe at installation 200GB/s
 - No redundancy
- Bespoke design for a particular use case
 - Checkpointing of cosmology simulations

/cosma7

- New replacement storage for /cosma7
 - Installed in 2023
 - More cost-effective to purchase new storage than to extend the warranty on old storage for 2 years
 - 2 MDSs, 4 OSSs
 - Dell R6526 servers, Dell PowerStore and 4x ME5084 controllers

DELLEMO

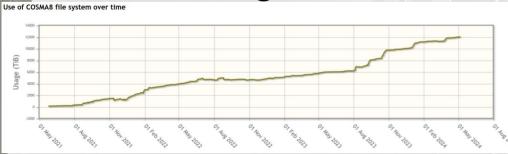
- Idiskfs throughout
- 3.4PB, 8 OSTs, 2 MDTs
- Migration upon request

COSMA8

DELLEM

DELLEMO

- 2 file systems: /cosma8 and /snap8
 - /cosma8: 16PB, 4 MDSs, 18 OSSs
 - MDS using Dell R7525 backed by NVMe, Idiskfs
 DRBD for data replication for High Availability
 - OSSs (R6525) paired with 18x ME484 JBODs with 16TB drives, ZFS
 - Has grown organically over time:
 - 3PB, 5PB, 12PB, 14PB, 16PB
 - Extensions are added live
 - Now at estimated 150GB/s
 - HDR200


/snap8

- /snap8: 1.2PB, 1 MDS, 24 OSSs
 - Dell R650 servers
 - 8x 6.4TB NVMe drives per OSS and MDS
 - 2x HDR100 per server
 - Dual IB card routing adds complexity
 - Apache Pass NVDIMMs to increase cache
 - Close to 400GB/s bandwidth
 - No redundancy on OSTs

Monitoring

- Status monitoring using cronjobs
 - e.g. reporting of hardware failures
- Lustre exporter to grafana in development
 - To view user usage stats etc
- User usage dashboard

User usage (Gil

User management

- Nothing complicated:
 - New users get allocated a directory on the least-full MDT
 - Default quota allocation
 - This can be increased upon request
 - Different projects have different rules
 - Mount points are reasonably obvious for users
 - e.g. /cosma8
 - Cross-mounted between clusters where possible
 - Read-only

File system compression

• On ZFS OSTs:

- Iz4 compression
 - Achieves ~1.1-1.2x across the file system

High availability (HA)

- Manual HA on some systems
 - /cosma6, /cosma7, /cosma8
 - Not on /cosma5, /cosma7old, /madfs, /snap7, /snap8
 - 2 for performance, rest due to design
- Pacemaker setup
 - Not used causes more problems than it solves

Backup and archival

- No automatic backup of data
 - MDTs are backed up daily
- Archival to tape available on request

Problems

Dual IB routing non-deterministic on startup
Occasional ZFS MDT kernel panics

/cosma5 only

Wish list

- ZFS rebuild times are large
 - >4 days
 - dRAID will probably solve this
 - We need to investigate Lustre 2.15
- Erasure coding would be nice
 - Particularly for the checkpointing (fast) file systems

Conclusions

- Lustre serves our use cases well
 - Cost effective and highly performant

Lots of operational experience