Using COSMA

A telescope for cosmology

Alastair Basden

Institute for Computational Cosmology

Alastair Basden
DiRAC / Durham University

Using telescopes

- Where are you pointing / where is your observa
 - Below the horizon?
- What are the seeing conditions like?
 - And is it raining?
- What wavelength filters are in use?
- How long does the observation need to be?
- What is the sensitivity of the instrument?
- How do you use the data analysis platform / pipeline?
- You need to understand the physics behind what you're trying to achieve!

Using cosmascopes

- You will benefit most if you try to understand a HPC system
 - They all vary slightly, the basics are the same
- If something isn't working try taking a scientific approach
 - Why, what has happened, how can it be resolved?
- And learn to make best use of it
 - Optimised codes, tuned to the system
 - Best for aiding net-zero
- If someone/website gives you instructions spend time to understand them
 - Don't just follow them blindly (sudo apt install just won't work!)

Accessing the system

- First, sign up for an account on SAFE:
 - You'll need a password and authenticator app
- Upload an ssh key (the public part)
 - Protected by a passphrase
- Request a login account on COSMA
 - And join the do020 project
 - Once authorised, you'll get an email from COSMA
 - Read it!

Logging in

- You will need:
 - Your ssh key (protected by a passphrase)
 - Your COSMA password
 - This will be sent in the welcome email
- ssh to COSMA may fail:
 - You've forgotten your passphrase or password
 - Your account has been disabled
 - Inactivity, failure to verify details on SAFE, invalid email
 - You are blocked temporarily
 - Too many password failures
 - You're using the wrong ssh key, or its file permissions are wrong
 - You're a Windows user!
- ssh -vvv will give you more information
- If you are asked to reset your password when you log in, please follow the instruction carefully

Login nodes

- A shared resource
 - Think about what you run here
 - Don't use all the cores
 - Don't use all the RAM
 - Don't leave things running when not needed
- Good for:
 - Compiling code
 - Quick test jobs
 - Submitting to the queues
 - Managing files

Slurm batch queues

- Slurm is your friend
 - Provides access to the compute resources
- Be inquisitive: learn the environment
 - What queues are available to you
 - How busy are they?
 - What type of nodes?
 - Cores, RAM, GPUs

Storage

- Your home space:
 - /cosma/home/do020/USERNAME
- Application space:
 - /cosma/apps/do020/USERNAME
- Scratch space:
 - /snap8/scratch/do020/USERNAME
- Data space:
 - /cosma8/data/
- Each is optimal for different things and can be tuned

Storage usage

- HPC file systems typically like smaller numbers of larger files
 - Many small files can cause performance issues
 - Therefore think about how you will write your outputs
 - e.g. don't let your simulation produce 100k files per day

Software

- Available as "modules"
 - Set up your desired environment using
 - "module load ..."
 - Try to understand what the module command does
- Or install your own
 - Python virtual environments are useful for this

Jupyter hub

- You'll need an ssh tunnel:
 - ssh -L localhost:PORT1:node:PORT2
 USERNAME@LOGIN.NODE
 - Understand what this means (and check its output)
 - PORT1 on your laptop (localhost) will act like a wormhole
 - Transporting data
 - Via LOGIN.NODE
 - To/from PORT2 on node
- Close notebooks when you no longer need them

Conclusions

- Learn to master your HPC systems
 - Don't them them master you!
- Visit the support pages
 - cosma.rtfd.io
- Ask around for help and advice
 - As a last resort, contact cosma-support@durham.ac.uk