The Durham HPC Hardware Lab

Institute for Computational Cosmology Durham University Alastair Basden, Peter Draper, Mark Lovell, Richard Regan, Paul Walker

Contents

- COSMA
 - DiRAC
 - The HPC Hardware Lab
 - Overview
 - Location
- Hardware access
- Hardware details

Alastair Basden

- Dept of Physics
 - Institute for Computational Cosmology
- HPC Manager COSMA
 - DiRAC national facility
- DiRAC Technical Directorate

- The COSmology MAchine
 - Est. 2001
 - Run by the ICC on behalf of DiRAC
 - Primarily covering STFC science areas
 - Largest HPC system in the country
 - (by some metrics)
- 3 generations in operation
- Newest being COSMA8
 - ~ ~70k cores, 0.5PB RAM, 20PB storage, 528 nodes

Dirac

- Established 2009
- Provides HPC to the STFC theory community
 - Particle Physics, Astrophysics, Cosmology, Solar System and Planetary Science and Nuclear Physics
- Three services:
 - Extreme Scaling: Edinburgh (TURSA)
 - Data Intensive: Cambridge and Leicester (CSD3 and DiaL)
 - Memory Intensive: Durham (COSMA)
- Co-designed and tailored for specific workloads
 - Bespoke systems for the science being carried out

HPC Hardware Lab

- Mission: Provide access to the latest HPC hardware to users from across the UK
 - For code testing, performance tuning and debugging
 - To advise on purchase of future technologies
 - To allow informed decisions to be made whenever funding appears

History

- Came together almost by accident
 - 2019: Intel provide a 56-core 6TB Cascade Lake system
 - For testing Non-volatile DIMM performance (Apache Pass)
 - 2019: University funding for the DINE cluster
 - BlueField DPU test system, 16 nodes
 - 2019: ExCALIBUR announced, with a H&ES component
 - Hardware and Enabling Software: \$4.5m
 - The UK £45m "preparation-for-exascale" fund

Hardware Lab Components

- DINE: Durham Intelligent Networking Environment
- DINE2
- CPU compute
- GPU compute
 - NVIDIA, AMD, Intel
- Composability
- Rockport 6D torus network fabric
- Storage laboratory
- Environmental
 - Solar panel installation
 - Immersion cooling
 - Heat storage
 - Logging and awareness
- Quantum
- Leading to bespoke system design

DINE

- Durham Intelligent Network Environment
 - A 24 node (initially 16) system for investigation of networking technologies
 - And other things
 - 32 cores, 512GB RAM per node
 - Has hosted:
 - BlueField-1
 - BlueField-2
 - Rockport Ethernet
- UK's first production AMD EPYC HPC system
- Funded by Durham

- Durham Investigatory Node Environment
 - 8 node Intel Sapphire Rapids system
 - 64 cores, 2TB RAM per node
 - Currently hosts a CerIO composable PCIe fabric

DINE-2

- 8x A30 GPUs, assignable in any number to any host
- Funded by DiRAC, IRIS and SKA

CPU compute

- Providing users with access to cutting edge CPU technologies:
- Coming soon: AMD Turin
- AMD Genoa and Bergamo
- NVIDIA Grace
- Intel Sapphire Rapids
- AMD Milan-X (extreme cache version)
- AMD Milan, Rome
- Intel Cascade Lake (with Apache Pass RAM, 6TB)
- Funded by OEMs, DiRAC, ExCALIBUR

GPU Compute

- Access to small numbers of latest GPUs
- Coming soon: AMD MI300X
 - And hopefully MI300A
- AMD MI210, MI100, MI50
- NVIDIA H100 (Grace-hopper system)
- NVIDIA A100, A30, V100
- Intel Ponte Vecchio
- Direct and queue-based access
- Funded by Dell, AMD, Intel, IRIS

Composability

- Infrastructure-as-a-service
 - The ultimate goal for cloud-type systems
 - Is it relevant for HPC?
 - How does performance suffer?
 - Is it stable?
 - What are the use cases?

Liqid composable system

Installed 2021 Server Server Server Server A PCIe4-based composable fabric: 4 lanes to eacl 3 A100 GPUs shared between 4 servers Including a login node GPUs per node can be changed in a few clicks **PCIe** fabric 12TB RAM shared between these servers switch Can be changed and reconfigured Positives: It works, can allow high RAM or GPU configurations Negatives: Bandwidth is shared Chassis: 3x GPU GPUs sometimes fail requiring a full stack reboot 12TB RAM RAM/kernel issues (and no Rocky9 support yet) **Rack-scale** limitations **Bottlenecks** ExCALIBUR funded Alastair Basden

DiRAC / Durham University

CerIO composable system

1111-1111

1111-1111

- Installed 2024
 - PCIe5-based fabric
 - No central switch: Uses a flit-based torus topology
 - Full data centre scalability
 - 200Gb/s to nodes
 - 300Gb/s inter-card bandwidth
- 8 compute nodes, 8x A30 GPUs
- Will allow networking and composability within a single fabric
- IRIS/SKA/ExCALIBUR/DiRAC

Rockport 6D Torus Ethernet

- A "switchless" fabric for 100G Ethernet
- Trailed on DINE in 2021
- Installed on COSMA7 in 2022
 - 224 nodes (half the cluster) replaced IB
 - Allows direct comparison of fabrics
 - At full HPC problem-size scale
- Works well
 - Performance comparable to InfiniBand
 - For real workloads
 - Handles congestion well
- ExCALIBUR/DiRAC funded

Storage sub-lab

- Various different storage technologies
 - Most make it into production
- High-performance scratch Lustre (NVMe)
- DAOS (NVMe)
- Ceph
- StorJ private cloud
- VAST (NVMe)
- Globus (data transfer)
- Lustre (efficient bulk storage)
- Tape
- Funded by DiRAC/IRIS/SKA

The snap file systems

- 1.2PB fast parallel file system
 - Lustre
 - ~400 GBytes/s performance
- Use case: Dumping simulation snapshots
- 25 server nodes, each with 8x 6.4TB NVMe drives

DAOS

- A new(ish) open-source file system from Intel
 - 4-node system
 - Providing bulk storage to DINE
 - Fast performance at low latency

StorJ

- A distributed storage object cloud provider
 - We are working closely with them to have a private cloud instance spanning the 4 DiRAC sites
 - Good performance for hosting buckets
 - Ideal for data sharing with collaborators

View your project statistics.	u 🕖				
	check daily usage, and set project limits. La	arn More			
Team Info All team me	embers should use the same pa	ssphrase to access the same data.			
Objects () Project tatal	Buckets In this project	Access Keys Total keys	Team Project members	CO, Estimated For this project	CO ₄ Avoided By using Storp
2	-		2	O hg CO.e	O kg CO.e
△ Storage ①			± Dewnsteed ③		
711.70MB Used • No Limit Tool 54.30000101			0 Used = Ho 1 The Muth Bit Devices		
G Segments 🛈			🔁 Buckets		
12 Used	10sed 09,093,093 Availab m 100.000.000 (an avail		406ed 400 Ann Unit 500 New		
Daily usage Select data range to view d	Wy usage statistics.		d Described	Se	lect Date Range 1 09/26/2024 - 10/02/20
Daily usage Select date range to view d	illy usage statistics.		2 Download ()	Se	liest Date Range 09/26/2024 - 10/02/20
Daily usage Select date range to view d Sterage 805MB control	illy usage statistics.		⊻ Download ③ 1508	- Se	lect Date Range 09/26/2024 - 10/02/20
Daily usage Select date range to view d the select date range to view d the select date range to view d the select date range to view d	ily usaga italistos.		2 Downsood ③ 1508 1008	50	lect Date Range 09/26/2024 - 10/02/20
Daily usage Select data range to view d Storage 800MB 400MB 200MB	Wy usaga Watifics.		⊻ Described 1508 1008 508	Se	rect Date Range 09/26/2024 - 10/02/20
Daily usage Detect data range to view d Storage 800M8 400M8 200M8 0M8	illy unige Klatifes.		Deamstead Tops 1508 1008 508 08	<u></u>	tect Date Range

VAST

- A new NVMe-based flash file system
 - Offering high performance with deduplication
 - Thus good data compression ratios (currently ~4:1)
- COSMA homespace
- IRIS/SKA

Environmental-related

- HPC is a huge energy user
 - COSMA ~1MW at peak
 - Responsibility to keep this as low as possible
 - 2023: Installation of ~£1m solar panels
 - Funded by DiRAC
 - Investigation into the interplay between supply and demand

Cooling sub-lab

- A sequence of technologies:
 - Passive cooled rear doors (pre 2010)
 - Active cooled rear doors (2018)
 - Direct liquid cooling (2020)
 - Immersion cooling (2024-5)
 - As a national object-of-study
 - Support for visits to Durham for operators to learn this technology
 - Reduced operational and embodied CO2
 - EPSRC DRI funding

Mine water heat storage

- We are sitting on old, flooded mine workings
- HPC produces a lot of heat
 - We can heat buildings with this in the winter
 - (why don't we?!?)
 - What can we do with the heat in the summer?
 - Store it underground for extraction in the winter
- This project will investigate feasibility
 - In particular, how fast does the water flow?
- EPSRC funded

Energy awareness

- Quarterly reporting to users around energy usage
 - Ability to query energy usage for each submitted job
 - Monitoring of power on a node, rack, room and system scale
- Power-down of unused nodes

Quantum computing

- No quantum compute in Durham (yet)
- However, the hardware lab controls national access to:
 - DWAVE quantum annealer
 - QuEra neutral atom quantum computer (shortly)
- ExCALIBUR funded

Alastair Basden DiRAC / Durham University

quantumcomputinguk.org

Accessing the hardware lab

- Sign up on SAFE:
 - safe.epcc.ed.ac.uk/dirac
- Apply to join an appropriate project code:
 - do009: General purpose
 - do015: Cerio compsable system
 - do016: NVIDIA GPUs
 - do017: Intel GPUs
 - do018: AMD GPUs
- And feel free to arrange a visit to the data centre

Leading to bespoke system design

- Key outputs from the hardware lab are:
 - Up to date knowledge of performance on new technologies
 - Experience profiling and optimising codes
 - Code preparation for future systems
 - Training on new technologies and tools
 - User awareness
 - Input into future system design

Future plans

- MI300X and possibly MI300A systems
 - UntetherAl card
 - Turin CPU
 - CXL composable systems
- Ultra-Ethernet fabric
- Funding:
 - DiRAC, IRIS, UKRI calls, ExCALIBUR-2?, Computer Science?, Physics

Conclusion

- The Durham HPC Hardware Laboratory
 - Accessible for UK researchers
 - Single login
 - Cutting edge technologies
 - Let us know if there is something of particular interest