/*******************************************************************************
* This file is part of SWIFT.
* Copyright (c) 2021 Loic Hausammann (loic.hausammann@epfl.ch)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see .
*
******************************************************************************/
#ifndef SWIFT_GEAR_SINK_H
#define SWIFT_GEAR_SINK_H
#include
/* Local includes */
#include "cooling.h"
#include "minmax.h"
#include "random.h"
#include "sink_part.h"
#include "sink_properties.h"
/**
* @brief Computes the time-step of a given sink particle.
*
* @param sp Pointer to the sink-particle data.
*/
__attribute__((always_inline)) INLINE static float sink_compute_timestep(
const struct sink* const sp) {
return FLT_MAX;
}
/**
* @brief Initialises the sink-particles for the first time
*
* This function is called only once just after the ICs have been
* read in to do some conversions.
*
* @param sp The particle to act upon
* @param sink_props The properties of the sink particles scheme.
*/
__attribute__((always_inline)) INLINE static void sink_first_init_sink(
struct sink* sp, const struct sink_props* sink_props) {
sp->r_cut = sink_props->cut_off_radius;
sp->time_bin = 0;
sp->number_of_gas_swallows = 0;
sp->number_of_direct_gas_swallows = 0;
sp->number_of_sink_swallows = 0;
sp->number_of_direct_sink_swallows = 0;
sp->swallowed_angular_momentum[0] = 0.f;
sp->swallowed_angular_momentum[1] = 0.f;
sp->swallowed_angular_momentum[2] = 0.f;
sink_mark_sink_as_not_swallowed(&sp->merger_data);
}
/**
* @brief Initialisation of particle data before the hydro density loop.
* Note: during initalisation (space_init)
*
* @param p The particle to act upon
*/
__attribute__((always_inline)) INLINE static void sink_init_part(
struct part* restrict p) {
struct sink_part_data* cpd = &p->sink_data;
cpd->can_form_sink = 1;
}
/**
* @brief Initialisation of sink particle data before sink loops.
* Note: during initalisation (space_init_sinks)
*
* @param sp The particle to act upon
*/
__attribute__((always_inline)) INLINE static void sink_init_sink(
struct sink* sp) {
#ifdef DEBUG_INTERACTIONS_SINKS
for (int i = 0; i < MAX_NUM_OF_NEIGHBOURS_SINKS; ++i)
sp->ids_ngbs_accretion[i] = -1;
sp->num_ngb_accretion = 0;
for (int i = 0; i < MAX_NUM_OF_NEIGHBOURS_SINKS; ++i)
sp->ids_ngbs_merger[i] = -1;
sp->num_ngb_merger = 0;
for (int i = 0; i < MAX_NUM_OF_NEIGHBOURS_SINKS; ++i)
sp->ids_ngbs_formation[i] = -1;
sp->num_ngb_formation = 0;
#endif
}
/**
* @brief Predict additional particle fields forward in time when drifting
*
* @param sp The particle
* @param dt_drift The drift time-step for positions.
*/
__attribute__((always_inline)) INLINE static void sink_predict_extra(
struct sink* restrict sp, float dt_drift) {}
/**
* @brief Sets the values to be predicted in the drifts to their values at a
* kick time
*
* @param sp The particle.
*/
__attribute__((always_inline)) INLINE static void sink_reset_predicted_values(
struct sink* restrict sp) {}
/**
* @brief Kick the additional variables
*
* @param sp The particle to act upon
* @param dt The time-step for this kick
*/
__attribute__((always_inline)) INLINE static void sink_kick_extra(
struct sink* sp, float dt) {}
/**
* @brief Calculate if the gas has the potential of becoming
* a sink.
*
* Return 0 if no sink formation should occur.
* Note: called in runner_do_sink_formation
*
* @param sink_props the sink properties to use.
* @param p the gas particles.
* @param xp the additional properties of the gas particles.
* @param phys_const the physical constants in internal units.
* @param cosmo the cosmological parameters and properties.
* @param hydro_props The properties of the hydro scheme.
* @param us The internal system of units.
* @param cooling The cooling data struct.
*
*/
INLINE static int sink_is_forming(
const struct part* restrict p, const struct xpart* restrict xp,
const struct sink_props* sink_props, const struct phys_const* phys_const,
const struct cosmology* cosmo,
const struct hydro_props* restrict hydro_props,
const struct unit_system* restrict us,
const struct cooling_function_data* restrict cooling,
const struct entropy_floor_properties* restrict entropy_floor) {
/* the particle is not elligible */
if (!p->sink_data.can_form_sink) return 0;
const float temperature_max = sink_props->maximal_temperature;
const float temperature = cooling_get_temperature(phys_const, hydro_props, us,
cosmo, cooling, p, xp);
const float density_threshold = sink_props->density_threshold;
const float density = hydro_get_physical_density(p, cosmo);
if (density > density_threshold && temperature < temperature_max) {
message("forming a sink particle ! %lld", p->id);
return 1;
}
return 0;
}
/**
* @brief Decides whether a particle should be converted into a
* sink or not.
*
* No SF should occur, so return 0.
* Note: called in runner_do_sink_formation
*
* @param p The #part.
* @param xp The #xpart.
* @param sink_props The properties of the sink model.
* @param e The #engine (for random numbers).
* @param dt_sink The time-step of this particle
* @return 1 if a conversion should be done, 0 otherwise.
*/
INLINE static int sink_should_convert_to_sink(
const struct part* p, const struct xpart* xp,
const struct sink_props* sink_props, const struct engine* e,
const double dt_sink) {
/* We do not use a stockastic approach.
* Once elligible (sink_is_forming), the gas particle form a sink */
return 1;
}
/**
* @brief Copies the properties of the gas particle over to the
* sink particle.
*
* Nothing to do here.
*
* @param e The #engine
* @param p the gas particles.
* @param xp the additional properties of the gas particles.
* @param sink the new created sink particle with its properties.
* @param sink_props the sink properties to use.
* @param phys_const the physical constants in internal units.
* @param cosmo the cosmological parameters and properties.
* @param with_cosmology if we run with cosmology.
*/
INLINE static void sink_copy_properties(
const struct part* p, const struct xpart* xp, struct sink* sink,
const struct engine* e, const struct sink_props* sink_props,
const struct cosmology* cosmo, const int with_cosmology,
const struct phys_const* phys_const,
const struct hydro_props* restrict hydro_props,
const struct unit_system* restrict us,
const struct cooling_function_data* restrict cooling) {
/* First initialisation */
sink_init_sink(sink);
/* Flag it as not swallowed */
sink_mark_sink_as_not_swallowed(&sink->merger_data);
}
/**
* @brief Update the properties of a sink particles by swallowing
* a gas particle.
*
* @param sp The #sink to update.
* @param p The #part that is swallowed.
* @param xp The #xpart that is swallowed.
* @param cosmo The current cosmological model.
*/
__attribute__((always_inline)) INLINE static void sink_swallow_part(
struct sink* sp, const struct part* p, const struct xpart* xp,
const struct cosmology* cosmo) {
/* Get the current dynamical masses */
const float gas_mass = hydro_get_mass(p);
const float sink_mass = sp->mass;
/* Increase the dynamical mass of the sink. */
sp->mass += gas_mass;
sp->gpart->mass += gas_mass;
/* Physical velocity difference between the particles */
const float dv[3] = {(sp->v[0] - p->v[0]) * cosmo->a_inv,
(sp->v[1] - p->v[1]) * cosmo->a_inv,
(sp->v[2] - p->v[2]) * cosmo->a_inv};
/* Physical distance between the particles */
const float dx[3] = {(sp->x[0] - p->x[0]) * cosmo->a,
(sp->x[1] - p->x[1]) * cosmo->a,
(sp->x[2] - p->x[2]) * cosmo->a};
/* Collect the swallowed angular momentum */
sp->swallowed_angular_momentum[0] +=
gas_mass * (dx[1] * dv[2] - dx[2] * dv[1]);
sp->swallowed_angular_momentum[1] +=
gas_mass * (dx[2] * dv[0] - dx[0] * dv[2]);
sp->swallowed_angular_momentum[2] +=
gas_mass * (dx[0] * dv[1] - dx[1] * dv[0]);
/* Update the sink momentum */
const float sink_mom[3] = {sink_mass * sp->v[0] + gas_mass * p->v[0],
sink_mass * sp->v[1] + gas_mass * p->v[1],
sink_mass * sp->v[2] + gas_mass * p->v[2]};
sp->v[0] = sink_mom[0] / sp->mass;
sp->v[1] = sink_mom[1] / sp->mass;
sp->v[2] = sink_mom[2] / sp->mass;
sp->gpart->v_full[0] = sp->v[0];
sp->gpart->v_full[1] = sp->v[1];
sp->gpart->v_full[2] = sp->v[2];
/*
const float dr = sqrt(dx[0] * dx[0] + dx[1] * dx[1] + dx[2] * dx[2]);
message(
"sink %lld swallowing gas particle %lld "
"(Delta_v = [%f, %f, %f] U_V, "
"Delta_x = [%f, %f, %f] U_L, "
"Delta_v_rad = %f)",
sp->id, p->id, -dv[0], -dv[1], -dv[2], -dx[0], -dx[1], -dx[2],
(dv[0] * dx[0] + dv[1] * dx[1] + dv[2] * dx[2]) / dr);
*/
/* Update the sink metal masses */
struct chemistry_sink_data* sp_chem = &sp->chemistry_data;
const struct chemistry_part_data* p_chem = &p->chemistry_data;
chemistry_add_part_to_sink(sp_chem, p_chem, gas_mass);
/* This sink swallowed a gas particle */
sp->number_of_gas_swallows++;
sp->number_of_direct_gas_swallows++;
}
/**
* @brief Update the properties of a sink particles by swallowing
* a sink particle.
*
* @param spi The #sink to update.
* @param spj The #sink that is swallowed.
* @param cosmo The current cosmological model.
*/
__attribute__((always_inline)) INLINE static void sink_swallow_sink(
struct sink* spi, const struct sink* spj, const struct cosmology* cosmo) {
/* Get the current dynamical masses */
const float spi_dyn_mass = spi->mass;
const float spj_dyn_mass = spj->mass;
/* Increase the masses of the sink. */
spi->mass += spj->mass;
spi->gpart->mass += spj->mass;
/* Collect the swallowed angular momentum */
spi->swallowed_angular_momentum[0] += spj->swallowed_angular_momentum[0];
spi->swallowed_angular_momentum[1] += spj->swallowed_angular_momentum[1];
spi->swallowed_angular_momentum[2] += spj->swallowed_angular_momentum[2];
/* Update the sink momentum */
const float sink_mom[3] = {
spi_dyn_mass * spi->v[0] + spj_dyn_mass * spj->v[0],
spi_dyn_mass * spi->v[1] + spj_dyn_mass * spj->v[1],
spi_dyn_mass * spi->v[2] + spj_dyn_mass * spj->v[2]};
spi->v[0] = sink_mom[0] / spi->mass;
spi->v[1] = sink_mom[1] / spi->mass;
spi->v[2] = sink_mom[2] / spi->mass;
spi->gpart->v_full[0] = spi->v[0];
spi->gpart->v_full[1] = spi->v[1];
spi->gpart->v_full[2] = spi->v[2];
/* Update the sink metal masses */
struct chemistry_sink_data* spi_chem = &spi->chemistry_data;
const struct chemistry_sink_data* spj_chem = &spj->chemistry_data;
chemistry_add_sink_to_sink(spi_chem, spj_chem);
/* This sink swallowed a sink particle */
spi->number_of_sink_swallows++;
spi->number_of_direct_sink_swallows++;
}
/**
* @brief Should the sink spawn a star particle?
*
* Nothing to do here.
*
* @param e The #engine
* @param sink the sink particle.
* @param sink_props the sink properties to use.
* @param phys_const the physical constants in internal units.
* @param cosmo the cosmological parameters and properties.
* @param with_cosmology if we run with cosmology.
* @param us The internal unit system.
*/
INLINE static int sink_spawn_star(struct sink* sink, const struct engine* e,
const struct sink_props* sink_props,
const struct cosmology* cosmo,
const int with_cosmology,
const struct phys_const* phys_const,
const struct unit_system* restrict us) {
const float random_number = random_unit_interval(
sink->id, e->ti_current, random_number_star_formation);
// return random_number < 1; //1e-3;
if (sink->n_stars > 0) {
if (random_number < 1e-2) {
// sink->n_stars--;
// message("%lld spawn a star : n_star is now %d",sink->id,sink->n_stars);
return 0;
} else
return 0;
} else
return 0;
}
/**
* @brief Copy the properties of the sink particle towards the new star.
* This function also needs to update the sink particle.
*
* Nothing to do here.
*
* @param e The #engine
* @param sink the sink particle.
* @param sp The star particle.
* @param sink_props the sink properties to use.
* @param phys_const the physical constants in internal units.
* @param cosmo the cosmological parameters and properties.
* @param with_cosmology if we run with cosmology.
* @param us The internal unit system.
*/
INLINE static void sink_copy_properties_to_star(
struct sink* sink, struct spart* sp, const struct engine* e,
const struct sink_props* sink_props, const struct cosmology* cosmo,
const int with_cosmology, const struct phys_const* phys_const,
const struct unit_system* restrict us) {
sp->h = sink->r_cut;
}
#endif /* SWIFT_GEAR_SINK_H */