/******************************************************************************* * This file is part of SWIFT. * Copyright (c) 2022 Filip Husko (filip.husko@durham.ac.uk) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see . * ******************************************************************************/ #ifndef SWIFT_SPIN_JET_BLACK_HOLES_SPIN_H #define SWIFT_SPIN_JET_BLACK_HOLES_SPIN_H /* Standard headers */ #include /* Local includes */ #include "black_holes_properties.h" #include "black_holes_struct.h" #include "inline.h" #include "physical_constants.h" /** * @brief Compute the radius of the horizon of a BH particle in gravitational * units. * * @param a Black hole spin, -1 < a < 1. */ __attribute__((always_inline)) INLINE static float r_hor(float a) { return 1. + sqrtf((1. - a) * (1. + a)); } /** * @brief Compute the radius of the innermost stable circular orbit of a * BH particle in gravitational units. * * The expression is given in Appendix B of Fiacconi et al. (2018) or eqn. 4 in * Griffin et al. (2019). * * @param a Black hole spin, -1 < a < 1. */ __attribute__((always_inline)) INLINE static float r_isco(float a) { const float Z1 = 1. + (cbrtf((1. + fabsf(a)) * (1. - a * a)) + cbrtf((1. - fabsf(a)) * (1. - a * a))); const float Z2 = sqrtf(3. * a * a + Z1 * Z1); const float R_ISCO = 3. + Z2 - a / fabsf(a) * sqrtf((3. - Z1) * (3. + Z1 + 2. * Z2)); #ifdef SWIFT_DEBUG_CHECKS if (Z1 > 3.) { error( "Something went wrong with calculation of Z1 factor for r_isco of" " black holes. Z1 is %f instead of Z1 > 3.", Z1); } if ((3. + Z1 + 2. * Z2) < 0.) { error( "Something went wrong with calculation of (3. + Z1 + 2. * Z2 ) " "factor for r_isco of black holes. (3. + Z1 + 2. * Z2 ) is %f instead " "of" " (3. + Z1 + 2. * Z2 ) > 0.", 3. + Z1 + 2. * Z2); } if (R_ISCO < 1.) { error( "Something went wrong with calculation of R_ISCO of black holes. " "R_ISCO is %f instead >= 1.", R_ISCO); } #endif return R_ISCO; } /** * @brief Compute the magnitude of the angular momentum of the black hole * given its spin. * * @param a Black hole spin magnitude, 0 < a < 1. * @param constants Physical constants (in internal units). */ __attribute__((always_inline)) INLINE static float j_BH( struct bpart* bp, const struct phys_const* constants) { const float J_BH = fabs(bp->subgrid_mass * bp->subgrid_mass * bp->spin * constants->const_newton_G / constants->const_speed_light_c); #ifdef SWIFT_DEBUG_CHECKS if (J_BH <= 0.) { error( "Something went wrong with calculation of j_BH of black holes. " " J_BH is %f instead of J_BH > 0.", J_BH); } #endif return J_BH; } /** * @brief Compute the gravitational radius of a black hole. * * @param a Black hole mass. * @param constants Physical constants (in internal units). */ __attribute__((always_inline)) INLINE static float R_gravitational( float mass, const struct phys_const* constants) { const float r_G = mass * constants->const_newton_G / (constants->const_speed_light_c * constants->const_speed_light_c); #ifdef SWIFT_DEBUG_CHECKS if (r_G <= 0.) { error( "Something went wrong with calculation of R_G of black holes. " " R_G is %f instead of R_G > 0.", r_G); } #endif return r_G; } /** * @brief Compute the warp radius of a black hole particle. * * The result depends on bp->accretion_mode (thick disk, thin disk or * slim disk). For the thick disk and slim disk, the radius is calculated * from Lubow et al. (2002), eqn. 22 with x=1. The result will be different * only due to different aspect ratios H/R=h_0. * * For the thin disk, the result depends on props->TD_region (B - region b from * Shakura & Sunyaev 1973, C - region c from Shakura & Sunyaev 1973). The warp * radii are taken as eqns. 11 from Griffin et al. (2019) and A8 from Fiacconi * et al. (2018), respectively. * * For the thin disk we also have to include the possibility that the self- * gravity radius is smaller than the warp radius. In this case r_warp=r_sg * because the disk cannot be larger than the self-gravity radius, and the * entire disk is warped. The sg radius is taken as eqns. 16 in Griffin et al. * (2019) and A6 in Fiacconi et al. (2018), respectively. * * @param bp Pointer to the b-particle data. * @param constants Physical constants (in internal units). * @param props Properties of the black hole scheme. */ __attribute__((always_inline)) INLINE static float r_warp( struct bpart* bp, const struct phys_const* constants, const struct black_holes_props* props) { /* Define placeholder variable for the result */ float Rw = -1.; /* Gravitational radius */ const float R_G = R_gravitational(bp->subgrid_mass, constants); /* Start branching depending on which accretion mode the BH is in */ if (bp->accretion_mode == BH_thick_disc) { /* Eqn. 22 from Lubow et al. (2002) with H/R=h_0_ADAF (thick disk) */ const float base = 15.36 * fabsf(bp->spin) / props->h_0_ADAF_2; Rw = R_G * powf(base, 0.4); } else if (bp->accretion_mode == BH_slim_disc) { /* Eqn. 22 from Lubow et al. (2002) with H/R=1/gamma_SD (slim disk) */ const float base = 15.36 * fabsf(bp->spin) * props->gamma_SD; Rw = R_G * powf(base, 0.4); } else if (bp->accretion_mode == BH_thin_disc) { /* Start branching depending on which region of the thin disk we wish to base the model upon (TD_region=B: region b from Shakura & Sunyaev 1973, or TD_region=C: region c) */ if (props->TD_region == TD_region_B) { /* Calculate different factors in eqn. 11 (Griffin et al. 2019) for warp radius of region b in Shakura & Sunyaev (1973) */ float mass_factor = powf(bp->subgrid_mass / (1e8 * constants->const_solar_mass), 0.2); float edd_factor = powf(bp->eddington_fraction, 0.4); /* Gather the factors and finalize calculation */ const float base = mass_factor * fabsf(bp->spin) / (props->xi_TD * props->alpha_factor_08 * edd_factor); const float rw = 3410. * 2. * R_G * powf(base, 0.625); /* Self-gravity radius in region b: eqn. 16 in Griffin et al. */ mass_factor = powf(bp->subgrid_mass / (1e8 * constants->const_solar_mass), -0.961); edd_factor = powf(bp->eddington_fraction, -0.353); const float rs = 4790. * 2. * R_G * mass_factor * props->alpha_factor_0549 * edd_factor; /* Take the minimum */ Rw = min(rs, rw); } if (props->TD_region == TD_region_C) { /* Calculate different factors in eqn. A8 (Fiacconi et al. 2018) */ float mass_factor = powf(bp->subgrid_mass / (1e6 * constants->const_solar_mass), 0.2); float edd_factor = powf(bp->eddington_fraction, 0.3); /* Gather the factors and finalize calculation */ const float base = mass_factor * fabsf(bp->spin) / (props->xi_TD * props->alpha_factor_02 * edd_factor); const float rw = 1553. * 2. * R_G * powf(base, 0.5714); /* Repeat the same for self-gravity radius - eqn. A6 in F2018 */ mass_factor = powf(bp->subgrid_mass / (1e6 * constants->const_solar_mass), -1.1556); edd_factor = powf(bp->eddington_fraction, -0.48889); const float rs = 1.2 * 100000. * 2. * R_G * mass_factor * props->alpha_factor_06222 * edd_factor; /* Take the minimum */ Rw = min(rs, rw); } } #ifdef SWIFT_DEBUG_CHECKS if (Rw < 0.) { error( "Something went wrong with calculation of Rw of black holes. " " Rw is %f instead of Rw >= 0.", Rw); } #endif return Rw; } /** * @brief Compute the warp mass of a black hole particle. * * Calculated as the integral of the surface density of the disk up to R_warp. * The result again depends on type of accretion mode, both due to different * R_warp and different surface densities. * * The surface densities for the thick and slim disk take the same form * (eqn. 2.3 in Narayan & Yi 1995 for rho, and then sigma = rho * 2H = * dot(M_BH) / (2pi * R * abs(v_r))). They differ due to different radial * radial velocities in the disks: v_r = -alpha * v_0 * v_K (with v_K * the Keplerian velocity). These differences are encoded in the numerical * constant v_0, which depends on alpha in Narayan & Yi for the thick disk, * and is roughly constant for the slim disk (Wang & Zhou 1999). * * For the thin disk the surface densities are more complex, and again depend * on which region of the disk is chosen to be modelled (region b or c from * Shakura & Sunyaev 1973). Sigma for region b is given by eqn. 7 in Griffin * et al. (2019) and for region c, it is not given explicitly but can be * calculated based on Appendix A in Fiacconi et al. (2018). * * @param bp Pointer to the b-particle data. * @param constants Physical constants (in internal units). * @param props Properties of the black hole scheme. */ __attribute__((always_inline)) INLINE static float m_warp( struct bpart* bp, const struct phys_const* constants, const struct black_holes_props* props) { /* Define placeholder variable for the result */ float Mw = -1.; /* Gravitational radius */ const float R_G = R_gravitational(bp->subgrid_mass, constants); /* Start branching depending on which accretion mode the BH is in */ if ((bp->accretion_mode == BH_thick_disc) || (bp->accretion_mode == BH_slim_disc)) { /* Define v_0, the only factor which differs between thick and slim disc */ float v_0; if (bp->accretion_mode == BH_thick_disc) { v_0 = props->v_0_ADAF; } else { v_0 = props->gamma_SD_inv; } /* Final result based on eqn. 2.3 in Narayan & Yi 1995*/ Mw = 2. * bp->accretion_rate / (3. * props->alpha_acc * v_0 * sqrtf(bp->subgrid_mass * constants->const_newton_G)) * powf(r_warp(bp, constants, props), 1.5); } else { /* Start branching depending on which region of the thin disk we wish to base the model upon (TD_region=B: region b from Shakura & Sunyaev 1973, or TD_region=C: region c) */ if (props->TD_region == TD_region_B) { /* Calculate different factors that appear in result for M_warp */ const float mass_factor = powf(bp->subgrid_mass / (1e8 * constants->const_solar_mass), 2.2); const float edd_factor = powf(bp->eddington_fraction, 0.6); const float R_factor = powf(r_warp(bp, constants, props) / (2. * R_G), 1.4); /* Gather factors and finalize calculation */ Mw = constants->const_solar_mass * 1.35 * mass_factor * props->alpha_factor_08_inv * edd_factor * R_factor; } if (props->TD_region == TD_region_C) { /* Same as above but for region c of disk */ const float mass_factor = powf(bp->subgrid_mass / (1e6 * constants->const_solar_mass), 2.2); const float edd_factor = powf(bp->eddington_fraction, 0.7); const float R_factor = powf(r_warp(bp, constants, props) / (2. * R_G), 1.25); Mw = constants->const_solar_mass * 0.01 * mass_factor * props->alpha_factor_08_inv_10 * edd_factor * R_factor; } } #ifdef SWIFT_DEBUG_CHECKS if (Mw < 0.) { error( "Something went wrong with calculation of Mw of black holes. " " Mw is %f instead of Mw >= 0.", Mw); } #endif return Mw; } /** * @brief Compute the warp angular momentum of a black hole particle. * * Calculated as the integral of the surface density times the specific * angular momentum of the disk up to R_warp. The result depends on type * of accretion mode, due to different R_warp, surface densities and spec. * ang. momenta of the disks. * * The surface densities are the same as for M_warp. For the thin disk, the * spec. ang. mom. is L(R) = R * v_K(R), because orbits are perfectly circular. * For the thick and slim disk, this is replaced by L(R) = Omega_0 * R * v_K(R) * , with Omega_0 a numerical constant between 0 and 1 which encodes the fact * that rotation is slower in the two disks. The values for Omega_0 are given * in Narayan & Yi (1995) and Wang & Zhou (1999) for the thick and slim disk, * respectively. * * @param bp Pointer to the b-particle data. * @param constants Physical constants (in internal units). * @param props Properties of the black hole scheme. */ __attribute__((always_inline)) INLINE static float j_warp( struct bpart* bp, const struct phys_const* constants, const struct black_holes_props* props) { /* Define placeholder variable for the result */ float Jw = -1.; /* Start branching depending on which accretion mode the BH is in */ if ((bp->accretion_mode == BH_thick_disc) || (bp->accretion_mode == BH_slim_disc)) { /* Get numerical constants for radial and tangential velocities for the thick and slim disk, which factor into the surface density and spec. ang. mom., respectively */ float v_0 = 0.; float omega_0 = 0.; if (bp->accretion_mode == BH_thick_disc) { v_0 = props->v_0_ADAF; omega_0 = props->omega_0_ADAF; } else { v_0 = props->gamma_SD_inv; omega_0 = props->gamma_SD_inv; } /* Gather factors for the final result */ Jw = 2. * bp->accretion_rate * omega_0 / (2. * props->alpha_acc * v_0) * r_warp(bp, constants, props) * r_warp(bp, constants, props); } else { /* Start branching depending on which region of the thin disk we wish to base the model upon (TD_region=B: region b from Shakura & Sunyaev 1973, or TD_region=C: region c). The warp radius can generally be related to the warp mass and radius, if one assumes Keplerian rotation, with the following relation: J_warp = (c+2)/(c+5/2) * M_warp * sqrt(M_BH * G * R_warp), where c is the slope of the surface density profile: sigma~R^c. For region b, c=-3/5 (see Griffin et al. 2019), and for region c, c=-3/4 (see Fiacconi et al. 2018). */ if (props->TD_region == TD_region_B) { Jw = 0.737 * m_warp(bp, constants, props) * sqrtf(bp->subgrid_mass * constants->const_newton_G * r_warp(bp, constants, props)); } if (props->TD_region == TD_region_C) { Jw = 0.714 * m_warp(bp, constants, props) * sqrtf(bp->subgrid_mass * constants->const_newton_G * r_warp(bp, constants, props)); } } #ifdef SWIFT_DEBUG_CHECKS if (Jw < 0.) { error( "Something went wrong with calculation of Jw of black holes. " " Jw is %f instead of Jw >= 0.", Jw); } #endif return Jw; } /** * @brief Compute the spin-dependant radiative efficiency of a BH particle in * the radiatively efficient (thin disc) regime. * * This is eqn. 3 in Griffin et al. (2019), based on Novikov & Thorne (1973). * * @param a Black hole spin, -1 < a < 1. */ __attribute__((always_inline)) INLINE static float eps_NT(float a) { #ifdef SWIFT_DEBUG_CHECKS if (r_isco(a) <= 0.6667) { error( "Something went wrong with calculation of eps_NT of black holes. " " r_isco is %f instead of r_isco > 1.", r_isco(a)); } #endif return 1. - sqrtf(1. - 2. / 3. / r_isco(a)); } /** * @brief Compute the spin- and accretion rate-dependant radiative efficiency * of a BH particle in the super-Eddington (slim disk) regime. * * This is eqn. 3 in Madau et al. (2014), which is based on numerical GR * results by Sadowski (2009). * * @param a Black hole spin, -1 < a < 1. * @param m_dot Accretion rate normalized to the Eddington rate. */ __attribute__((always_inline)) INLINE static float eps_SD(float a, float mdot) { const float B = powf(4.627 - 4.445 * a, -0.5524); const float C = powf(827.3 - 718.1 * a, -0.706); const float A = powf(0.9663 - 0.9292 * a, -0.5693); #ifdef SWIFT_DEBUG_CHECKS if (mdot <= 0.) { error( "The calculation of eps_SD was called even though mdot is %f. " " This function should not have been called if the accretion rate is " " not > 0.", mdot); } #endif return 0.1 / mdot * (0.985 / (B + 1.6 / mdot) + 0.015 / (C + 1.6 / mdot)) * A; } /** * @brief Decide which regime (mode) of accretion the BH particle is in. * * The possible modes are the thick disk, thin disk and slim disk, in * order of increasing accretion rate. The transition from thick to thin disk * is at 0.4*alpha^2, based on current theory (Yuan & Narayan 2014). The * transition from thin to slim disk occurs when the slim disk efficiency * becomes sufficiently weak compared to the thin disk one. We parametrize * this transition as occuring at eps_SD = props->TD_SD_eps_r_threshold * * eps_TD, with props->TD_SD_eps_r_threshold < 1 of order 0.5 * * @param bp Pointer to the b-particle data. * @param constants Physical constants (in internal units). * @param props Properties of the black hole scheme. */ __attribute__((always_inline)) INLINE static void decide_mode( struct bpart* bp, const struct black_holes_props* props) { if (bp->eddington_fraction < props->mdot_crit_ADAF) { bp->accretion_mode = BH_thick_disc; } else { if ((eps_SD(bp->spin, bp->eddington_fraction) < props->TD_SD_eps_r_threshold * eps_NT(bp->spin)) && (props->include_slim_disk)) { bp->accretion_mode = BH_slim_disc; } else { bp->accretion_mode = BH_thin_disc; } } /* If we do not include radiative feedback, then we force the disk to be in the thick disk mode */ if (props->turn_off_radiative_feedback) { bp->accretion_mode = BH_thick_disc; } /* similar for if we do not include jets - we force the disk to be thin */ if (props->include_jets == 0) { bp->accretion_mode = BH_thin_disc; } } /** * @brief Compute the aspect ratio of the subgrid accretion disk. * * The result depends on bp->accretion_mode (thick disk, thin disk or * slim disk). For the thick disk and slim disk, the aspect ratio is * a constant, H/R = h_0. * * For the thin disk, the result depends on props->TD_region (B - region b from * Shakura & Sunyaev 1973, C - region c from Shakura & Sunyaev 1973). In region * b, we take H/R as eqn. 8 in Griffin et al. (2019), and in region c H/r is * taken directly as eqn. 2.19 from Shakura & Sunyaev (1973). * * @param bp Pointer to the b-particle data. * @param constants Physical constants (in internal units). * @param props Properties of the black hole scheme. */ __attribute__((always_inline)) INLINE static float aspect_ratio( struct bpart* bp, const struct phys_const* constants, const struct black_holes_props* props) { /* Define placeholder variable for the result */ float h_0 = -1.; /* Start branching depending on which accretion mode the BH is in */ if ((bp->accretion_mode == BH_thick_disc) || (bp->accretion_mode == BH_slim_disc)) { if (bp->accretion_mode == BH_thick_disc) { h_0 = props->h_0_ADAF; } else { h_0 = 0.5 * props->gamma_SD_inv; } } else { /* Start branching depending on which region of the thin disk we wish to base the model upon (TD_region=B: region b from Shakura & Sunyaev 1973, or TD_region=C: region c). */ if (props->TD_region == TD_region_B) { /* Compute factors for eqn. 8 in Griffin et al. (2019). */ const float mass_factor = powf(bp->subgrid_mass / (1e8 * constants->const_solar_mass), -0.1); const float edd_factor = powf(bp->eddington_fraction, 0.2); const float R_G = R_gravitational(bp->subgrid_mass, constants); const float R_factor = powf(r_warp(bp, constants, props) / (2. * R_G), 0.05); /* Gather factors and finalize calculation. */ h_0 = 1.25 * 0.001 * mass_factor * props->alpha_factor_01 * edd_factor * R_factor; } if (props->TD_region == TD_region_C) { /* Compute factors for eqn. 2.19 in Shakura & Sunyaev (1973). */ const float mass_factor = powf(bp->subgrid_mass / (1e8 * constants->const_solar_mass), -0.1); const float edd_factor = powf(bp->eddington_fraction, 0.15); const float R_G = R_gravitational(bp->subgrid_mass, constants); const float R_factor = powf(r_warp(bp, constants, props) / (2. * R_G), 0.125); /* Gather factors and finalize calculation. */ h_0 = 1.15 * 0.001 * mass_factor * props->alpha_factor_01 * edd_factor * R_factor; } } #ifdef SWIFT_DEBUG_CHECKS if (h_0 <= 0.) { error( "Something went wrong with calculation of h_0 of black holes. " " h_0 is %f instead of h_0 > 0.", h_0); } #endif return h_0; } /** * @brief Compute the jet efficiency of a BH particle. * * The result depends on bp->accretion_mode (thick disk, thin disk or * slim disk), through the varying H/R aspect ratios. * * The equation implemented is eqn. 9 from Tchekhovskoy et al. (2010), with the * dimensionless magnetic flux phi taken as eqn. 9 from Narayan et al. (2021). * * The dependence on the aspect ratio comes from results in Tchekhovskoy et al. * (2014) and the dependence in classical Blandford & Znajek (1979) jet theory. * * @param bp Pointer to the b-particle data. * @param constants Physical constants (in internal units). * @param props Properties of the black hole scheme. */ __attribute__((always_inline)) INLINE static float jet_efficiency( struct bpart* bp, const struct black_holes_props* props) { float jet_eff = -1.; if (props->fix_jet_efficiency) { jet_eff = props->jet_efficiency; } else { const float kappa = 0.05; const float horizon_ang_vel = bp->spin / (2. * (1. + sqrtf(1. - bp->spin * bp->spin))); const float phi = -20.2 * bp->spin * bp->spin * bp->spin - 14.9 * bp->spin * bp->spin + 34. * bp->spin + 52.6; jet_eff = kappa * 0.25 * M_1_PI * phi * phi * powf(bp->aspect_ratio * 3.333, props->jet_h_r_slope) * horizon_ang_vel * horizon_ang_vel * (1. + 1.38 * horizon_ang_vel * horizon_ang_vel - 9.2 * horizon_ang_vel * horizon_ang_vel * horizon_ang_vel * horizon_ang_vel); } /* Turn off jet feedback if we want to do that */ if (props->include_jets == 0) { jet_eff = 0.; } /* Turn off jets in thin disk mode if we want to do that */ if ((props->turn_off_secondary_feedback) && (bp->accretion_mode == BH_thin_disc)) { jet_eff = 0.; } #ifdef SWIFT_DEBUG_CHECKS if (jet_eff < 0.) { error( "Something went wrong with calculation of jet efficiency of black " "holes. jet_eff is %f instead of jet_eff >= 0.", jet_eff); } #endif return jet_eff; } /** * @brief Compute the radiative efficiency of a BH particle. * * The result depends on bp->accretion_mode (thick disk, thin disk or * slim disk), since all modes have different radiative physics. * * For the thin disk, we assume the Novikov-Thorne (1973) radiative efficiency * based on general relativity. For the slim disk, we take the fit from Madau * et al. (2014), which is based on numerical GR results by Sadowski (2009). * For the thick disk, we assume radiative efficiencies from Mahadevan et al. * (1997). * * @param bp Pointer to the b-particle data. * @param constants Physical constants (in internal units). * @param props Properties of the black hole scheme. */ __attribute__((always_inline)) INLINE static float rad_efficiency( struct bpart* bp, const struct black_holes_props* props) { /* Calculate Novikov-Thorne efficiency, which will be needed twice. */ const float eps_TD = eps_NT(bp->spin); /* Define placeholder variable for the result */ float rad_eff = -1; if (props->fix_radiative_efficiency) { rad_eff = props->radiative_efficiency; } else { /* Start branching depending on which accretion mode the BH is in */ if (bp->accretion_mode == BH_thin_disc) { /* Assign Novikov-Thorne efficiency to the thin disk. */ rad_eff = eps_TD; } else if (bp->accretion_mode == BH_slim_disc) { /* Assign Madau 2014 efficiency to the slim disk. */ rad_eff = eps_SD(bp->spin, bp->eddington_fraction); } else { #ifdef SWIFT_DEBUG_CHECKS if (props->beta_acc > 1.) { error( "Something went wrong with calculation of radiative efficiency of " " black holes. beta_acc is %f instead of beta_acc < 1.", props->beta_acc); } #endif /* Assign Mahadevan 1997 efficiency to the thick disk. */ if (bp->eddington_fraction < props->edd_crit_thick) { rad_eff = 4.8 * eps_TD / r_isco(bp->spin) * (1. - props->beta_acc) * props->delta_ADAF; } else { rad_eff = 2.4 * eps_TD / r_isco(bp->spin) * props->beta_acc * bp->eddington_fraction * props->alpha_acc_2_inv; } } } /* Turn off radiative feedback if we want to do that */ if (props->turn_off_radiative_feedback) { rad_eff = 0.; } /* Turn off radiation in the thick disk mode if we want to do that */ if ((props->turn_off_secondary_feedback) && (bp->accretion_mode == BH_thick_disc)) { rad_eff = 0.; } #ifdef SWIFT_DEBUG_CHECKS if (rad_eff < 0.) { error( "Something went wrong with calculation of radiative efficiency of " " black holes. rad_eff is %f instead of rad_eff >= 0.", rad_eff); } #endif return rad_eff; } /** * @brief Compute the spec. ang. mom. at the inner radius of a BH particle. * * The result depends on bp->accretion_mode (thick disk, thin disk or * slim disk), since advection-dominated modes (thick and slim disk) * have more radial orbits. * * For the thin disk, we assume that the spec. ang. mom. consumed matches that * of the innermost stable circular orbit (ISCO). For the other two modes, we * assume that the accreted ang. mom. at the event horizon is 45 per cent of * that at the ISCO, based on the fit from Benson & Babul (2009). * * @param bp Pointer to the b-particle data. * @param constants Physical constants (in internal units). * @param props Properties of the black hole scheme. */ __attribute__((always_inline)) INLINE static float l_acc( struct bpart* bp, const struct phys_const* constants, const struct black_holes_props* props) { /* Define placeholder variable for the result */ float L = -1.; #ifdef SWIFT_DEBUG_CHECKS if (r_isco(bp->spin) <= 0.6667) { error( "Something went wrong with calculation of l_acc of black holes. " " r_isco is %f instead of r_isco > 1.", r_isco(bp->spin)); } #endif /* Spec. ang. mom. at ISCO */ const float L_ISCO = 0.385 * (1. + 2. * sqrtf(3. * r_isco(bp->spin) - 2.)); /* Branch depending on which accretion mode the BH is in */ if ((bp->accretion_mode == BH_thick_disc) || (bp->accretion_mode == BH_slim_disc)) { L = 0.45 * L_ISCO; } else { L = L_ISCO; } #ifdef SWIFT_DEBUG_CHECKS if (L <= 0.) { error( "Something went wrong with calculation of l_acc of black holes. " " l_acc is %f instead of l_acc > 0.", L); } #endif return L; } /** * @brief Compute the evolution of the spin of a BH particle. * * The result depends on bp->accretion_mode (thick disk, thin disk or * slim disk), due to differing spec. ang. momenta as well as jet and * radiative efficiencies. * * This equation corresponds to eqn. 2 in Benson & Babul (2009), including * a jet spindown term. * * @param bp Pointer to the b-particle data. * @param constants Physical constants (in internal units). * @param props Properties of the black hole scheme. */ __attribute__((always_inline)) INLINE static float da_dln_mbh_0( struct bpart* bp, const struct phys_const* constants, const struct black_holes_props* props) { const float a = bp->spin; if ((a == 0.) || (a < -0.9981) || (a > 0.9981)) { error( "The da_dln_mbh_0 function was called and spin is %f. Spin should " " not be a = 0, a < -0.998 or a > 0.998.", a); } float spinup_rate = 0.; if (props->include_GRMHD_spindown) { if (bp->accretion_mode == BH_thin_disc) { spinup_rate = l_acc(bp, constants, props) - 2. * a * (1. - rad_efficiency(bp, props)); } else { spinup_rate = 0.45 - 12.53 * a - 7.8 * a * a + 9.44 * a * a * a + 5.71 * a * a * a * a - 4.03 * a * a * a * a * a; } } else { spinup_rate = l_acc(bp, constants, props) - 2. * a * (1. - rad_efficiency(bp, props)) - sqrtf(1. - a * a) / a * (a * a + (1. + sqrtf(1. - a * a)) * (1. + sqrtf(1. - a * a))) * jet_efficiency(bp, props); } return spinup_rate; } /** * @brief Compute the jet kick velocity to be used for jet feedback. * * @param bp The #bpart doing feedback. * @param props Properties of the BH scheme. * @param cosmo The current cosmological model. * @param constants The physical constants (in internal units). */ __attribute__((always_inline)) INLINE static float black_hole_feedback_dv_jet( const struct bpart* bp, const struct black_holes_props* props, const struct cosmology* cosmo, const struct phys_const* constants) { float v_jet = -1.; if (props->AGN_jet_velocity_model == AGN_jet_velocity_BH_mass) { /* Assign the halo mass according to an empirical relation given in the parameter file */ const float halo_mass = powf(bp->subgrid_mass / props->v_jet_BH_mass_scaling_reference_mass, props->v_jet_BH_mass_scaling_slope); /* Get the critical density and virial overdensity at this redshift */ const float critical_density = cosmo->critical_density; const float overdensity = cosmo->overdensity_BN98; /* Gather the previous factors and compute the virial radius, virial velocity and finally the sound speed in the hot gas */ const float virial_radius = cbrtf(3. * halo_mass / (4. * M_PI * overdensity * critical_density)); const float virial_velocity = sqrtf(halo_mass * constants->const_newton_G / virial_radius); const float sound_speed = sqrtf(5. / 3. * 0.5) * virial_velocity; /* Return the jet velocity as some factor times the sound speed */ v_jet = fmaxf(props->v_jet_min, props->v_jet_cs_ratio * sound_speed); } else if (props->AGN_jet_velocity_model == AGN_jet_velocity_constant) { v_jet = props->v_jet; } else if (props->AGN_jet_velocity_model == AGN_jet_velocity_mass_loading) { /* Calculate jet velocity from the efficiency and mass loading, and then apply a floor value*/ v_jet = sqrtf(2.f * bp->jet_efficiency / props->v_jet_mass_loading) * constants->const_speed_light_c; v_jet = fmaxf(props->v_jet_min, v_jet); } else if (props->AGN_jet_velocity_model == AGN_jet_velocity_local) { /* Calculate jet power */ const float jet_power = bp->jet_efficiency * bp->accretion_rate * constants->const_speed_light_c * constants->const_speed_light_c; /* Calculate jet velocity from the power, smoothing length (proper, not comoving) and neighbour mass. Then apply floor. */ v_jet = props->v_jet_xi * cbrt(jet_power * bp->h * cosmo->a / (bp->ngb_mass / ((double)bp->num_ngbs))); v_jet = fmaxf(v_jet, props->v_jet_min); } else if (props->AGN_jet_velocity_model == AGN_jet_velocity_sound_speed) { /* Calculate jet power */ const float jet_power = bp->jet_efficiency * bp->accretion_rate * constants->const_speed_light_c * constants->const_speed_light_c; /* Calculate jet velocity from the power, smoothing length (proper, not comoving), neighbour sound speed and neighbour mass. Apply floor. */ v_jet = props->v_jet_xi * sqrtf(jet_power * bp->h * cosmo->a / (bp->ngb_mass * bp->sound_speed_gas)); v_jet = fmaxf(v_jet, props->v_jet_min); } else { error( "The scaling of jet velocities with halo mass is currently not " "supported."); } if (v_jet <= 0.) { error( "The black_hole_feedback_dv_jet returned a value less than 0. which " " is v_jet = %f.", v_jet); } return v_jet; } /** * @brief Auxilliary function used for the calculation of final spin of * a BH merger. * * This implements the fitting formula for the variable l from Barausse & * Rezolla (2009), ApJ, 704, Equation 10. It is used in the merger_spin_evolve() * function. * * @param a1 spin of the first (more massive) black hole * @param a2 spin of the less massive black hole * @param q mass ratio of the two black holes, 0 < q < 1 * @param eta symmetric mass ratio of the two black holes * @param cos_alpha cosine of the angle between the two spins * @param cos_beta cosine of the angle between the first spin and the initial * total angular momentum * @param cos_gamma cosine of the angle between the second spin and the initial * total angular momentu */ __attribute__((always_inline)) INLINE static float l_variable( const float a1, const float a2, const float q, const float eta, const float cos_alpha, const float cos_beta, const float cos_gamma) { /* Define the numerical fitting parameters used in Eqn. 10 */ const float s4 = -0.1229f; const float s5 = 0.4537f; const float t0 = -2.8904f; const float t2 = -3.5171f; const float t3 = 2.5763f; /* Gather the terms of Eqn. 10 */ const float term1 = 2.f * sqrtf(3.f); const float term2 = t2 * eta; const float term3 = t3 * eta * eta; const float term4 = s4 * (a1 * a1 + a2 * a2 * q * q * q * q + 2.f * a1 * a2 * q * q * cos_alpha) / ((1.f + q * q) * (1.f + q * q)); const float term5 = (s5 * eta + t0 + 2.f) * (a1 * cos_beta + a2 * q * q * cos_gamma) / (1.f + q * q); /* Return the variable l */ return term1 + term2 + term3 + term4 + term5; } /** * @brief Auxilliary function used for the calculation of final spin of * a BH merger. * * This implements the fitting formula for the final spin from Barausse & * Rezolla (2009), ApJ, 704, Equation 6. It is used in the merger_spin_evolve() * function. * * @param a1 spin of the first (more massive) black hole * @param a2 spin of the less massive black hole * @param q mass ratio of the two black holes, 0 < q < 1 * @param cos_alpha cosine of the angle between the two spins * @param cos_beta cosine of the angle between the first spin and the initial * total angular momentum * @param cos_gamma cosine of the angle between the second spin and the initial * total angular momentu */ __attribute__((always_inline)) INLINE static float final_spin( const float a1, const float a2, const float q, const float cos_alpha, const float cos_beta, const float cos_gamma, const float l) { /* Gather the terms of Eqn. 6 */ const float term1 = a1 * a1; const float term2 = a2 * a2 * q * q * q * q; const float term3 = 2.f * a1 * a2 * q * q * cos_alpha; const float term4 = 2.f * (a1 * cos_beta + a2 * q * q * cos_gamma) * l * q; const float term5 = l * l * q * q; /* Calculate the final spin */ return sqrtf(term1 + term2 + term3 + term4 + term5) / ((1.f + q) * (1.f + q)); } /** * @brief Auxilliary function used for the calculation of mass lost to GWs. * * In this model (SWIFT-EAGLE with spin) we assume 0 losses. * * @param a1 spin of the first (more massive) black hole * @param a2 spin of the less massive black hole * @param q mass ratio of the two black holes, 0 < q < 1 * @param eta symmetric mass ratio of the two black holes * @param cos_beta cosine of the angle between the first spin and the initial * total angular momentum * @param cos_gamma cosine of the angle between the second spin and the initial * total angular momentu */ __attribute__((always_inline)) INLINE static float mass_fraction_lost_to_GWs( const float a1, const float a2, const float q, const float eta, const float cos_beta, const float cos_gamma) { return 0.; } /** * @brief Compute the resultant spin of a black hole merger, as well as the * mass lost to gravitational waves. * * This implements the fitting formula for the final spin from Barausse & * Rezolla (2009), ApJ, 704, Equations 6 and 7. For the fraction of mass lost, * we use Eqns 16-18 from Barausse et al. (2012), ApJ, 758. * * @param bp Pointer to the b-particle data. * @param constants Physical constants (in internal units). * @param props Properties of the black hole scheme. */ __attribute__((always_inline)) INLINE static float merger_spin_evolve( struct bpart* bpi, const struct bpart* bpj, const struct phys_const* constants) { /* Check if something is wrong with the masses. This is important and could possibly happen as a result of jet spindown and mass loss at any time, so we want to know about it. */ if ((bpj->subgrid_mass <= 0.) || (bpi->subgrid_mass <= 0.)) { error( "Something went wrong with calculation of spin of a black hole " " merger remnant. The black hole masses are %f and %f, instead of > " "0.", bpj->subgrid_mass, bpi->subgrid_mass); } /* Get the black hole masses before the merger and losses to GWs. */ const float m1 = bpi->subgrid_mass; const float m2 = bpj->subgrid_mass; /* Define some variables (combinations of mass ratios) used in the papers described in the header. */ const float mass_ratio = m2 / m1; const float sym_mass_ratio = mass_ratio / ((mass_ratio + 1.f) * (mass_ratio + 1.f)); const float reduced_mass = m1 * m2 / (m1 + m2); /* The absolute values of the spins are also needed */ const float spin1 = fabsf(bpi->spin); const float spin2 = fabsf(bpj->spin); /* Check if the BHs have been spun down to 0. This is again an important potential break point, we want to know about it. */ if ((spin1 == 0.) || (spin2 == 0.)) { error( "Something went wrong with calculation of spin of a black hole " " merger remnant. The black hole spins are %f and %f, instead of > 0.", spin1, spin2); } /* Define the spin directions. */ const float spin_vec1[3] = {spin1 * bpi->angular_momentum_direction[0], spin1 * bpi->angular_momentum_direction[1], spin1 * bpi->angular_momentum_direction[2]}; const float spin_vec2[3] = {spin2 * bpj->angular_momentum_direction[0], spin2 * bpj->angular_momentum_direction[1], spin2 * bpj->angular_momentum_direction[2]}; /* We want to compute the direction of the orbital angular momentum of the two BHs, which is used in the fits. Start by defining the coordinates in the frame of one of the BHs (it doesn't matter which one, the total angular momentum is the same). */ const float relative_coordinates[3] = { bpj->x[0] - bpi->x[0], bpj->x[1] - bpi->x[1], bpj->x[2] - bpi->x[2]}; const float relative_velocities[3] = { bpj->v[0] - bpi->v[0], bpj->v[1] - bpi->v[1], bpj->v[2] - bpi->v[2]}; /* Calculate the orbital angular momentum itself. */ const float orbital_angular_momentum[3] = { reduced_mass * (relative_coordinates[1] * relative_velocities[2] - relative_coordinates[2] * relative_velocities[1]), reduced_mass * (relative_coordinates[2] * relative_velocities[0] - relative_coordinates[0] * relative_velocities[2]), reduced_mass * (relative_coordinates[0] * relative_velocities[1] - relative_coordinates[1] * relative_velocities[0])}; /* Calculate the magnitude of the orbital angular momentum. */ const float orbital_angular_momentum_magnitude = sqrtf(orbital_angular_momentum[0] * orbital_angular_momentum[0] + orbital_angular_momentum[1] * orbital_angular_momentum[1] + orbital_angular_momentum[2] * orbital_angular_momentum[2]); /* Normalize and get the direction of the orbital angular momentum. */ float orbital_angular_momentum_direction[3] = {0.f, 0.f, 0.f}; if (orbital_angular_momentum_magnitude > 0.) { orbital_angular_momentum_direction[0] = orbital_angular_momentum[0] / orbital_angular_momentum_magnitude; orbital_angular_momentum_direction[1] = orbital_angular_momentum[1] / orbital_angular_momentum_magnitude; orbital_angular_momentum_direction[2] = orbital_angular_momentum[2] / orbital_angular_momentum_magnitude; } /* We also need to compute the total (initial) angular momentum of the system, i.e. including the orbital angular momentum and the spins. This is needed since the final spin is assumed to be along the direction of this total angular momentum. Hence here we compute the direction. */ float total_angular_momentum_direction[3] = { m1 * spin1 * spin_vec1[0] + m2 * spin2 * spin_vec2[0] + orbital_angular_momentum[0], m1 * spin1 * spin_vec1[1] + m2 * spin2 * spin_vec2[1] + orbital_angular_momentum[1], m1 * spin1 * spin_vec1[2] + m2 * spin2 * spin_vec2[2] + orbital_angular_momentum[2]}; /* The above is actually the total angular momentum, so we need to normalize to get the directions. */ const float total_angular_momentum_magnitude = sqrtf(total_angular_momentum_direction[0] * total_angular_momentum_direction[0] + total_angular_momentum_direction[1] * total_angular_momentum_direction[1] + total_angular_momentum_direction[2] * total_angular_momentum_direction[2]); total_angular_momentum_direction[0] = total_angular_momentum_direction[0] / total_angular_momentum_magnitude; total_angular_momentum_direction[1] = total_angular_momentum_direction[1] / total_angular_momentum_magnitude; total_angular_momentum_direction[2] = total_angular_momentum_direction[2] / total_angular_momentum_magnitude; /* We now define some extra variables used by the fitting functions. The below ones are cosines of angles between the two spins and orbital angular momentum in various combinations (Eqn 9 in Barausse & Rezolla 2009) */ const float cos_alpha = (spin_vec1[0] * spin_vec2[0] + spin_vec1[1] * spin_vec2[1] + spin_vec1[2] * spin_vec2[2]) / (spin1 * spin2); const float cos_beta = (spin_vec1[0] * orbital_angular_momentum_direction[0] + spin_vec1[1] * orbital_angular_momentum_direction[1] + spin_vec1[2] * orbital_angular_momentum_direction[2]) / spin1; const float cos_gamma = (spin_vec2[0] * orbital_angular_momentum_direction[0] + spin_vec2[1] * orbital_angular_momentum_direction[1] + spin_vec2[2] * orbital_angular_momentum_direction[2]) / spin2; /* Get the variable l used in the fit, see Eqn. 10 in Barausse & Rezolla (2009). */ const float l = l_variable(spin1, spin2, mass_ratio, sym_mass_ratio, cos_alpha, cos_beta, cos_gamma); #ifdef SWIFT_DEBUG_CHECKS if (l < 0.) { error( "Something went wrong with calculation of spin of a black hole " " merger remnant. The l factor is %f, instead of >= 0.", l); } #endif /* Calculate the magnitude of final spin from Barausse & Rezolla (2009), Eqn. 6. */ const float final_spin_magnitude = final_spin(spin1, spin2, mass_ratio, cos_alpha, cos_beta, cos_gamma, l); #ifdef SWIFT_DEBUG_CHECKS if (final_spin_magnitude <= 0.) { error( "Something went wrong with calculation of spin of a black hole " " merger remnant. The final spin magnitude is %f, instead of > 0.", final_spin_magnitude); } #endif /* Assign the final spin value to the BH, but also make sure we don't go above 0.998 nor below 0.001. */ bpi->spin = min(final_spin_magnitude, 0.998); if (fabsf(bpi->spin) < 0.01) { bpi->spin = 0.01; } /* Assign the directions of the spin to the BH. */ bpi->angular_momentum_direction[0] = total_angular_momentum_direction[0]; bpi->angular_momentum_direction[1] = total_angular_momentum_direction[1]; bpi->angular_momentum_direction[2] = total_angular_momentum_direction[2]; /* Finally we also want to calculate the fraction of total mass-energy lost during the merger to gravitational waves. We use Eqn. 16 and 18 from Barausse et al. (2012), ApJ, p758. */ const float mass_frac_lost_to_GW = mass_fraction_lost_to_GWs( spin1, spin2, mass_ratio, sym_mass_ratio, cos_beta, cos_gamma); return mass_frac_lost_to_GW; } #endif /* SWIFT_SPIN_JET_BLACK_HOLES_SPIN_H */