
The EAGLE code

1

Chapter 1

TO do’s

• re-make plots of EOS

• compare kinetic feedback rob versus me

• change name of eos flag in sfr

• change temperature limit for sfr

• insert stellar evolution

• insert vel disp calculation

• add temperature floor to eagle sfr, below which stars are allowed to
form (in case they are not on the eos yet)

• add new parameter: minimum reheating temperature for type II SNe

• add new parameter: miminum re-heating temperature for type I SNe
and implement type I SNe re-heating in similar way as type II. For that
you need to compute the ngb mass weight, also in eagle enrich

• star’s smoothing lengths are not read from a snapshot file -¿ change
this

2

Chapter 2

Issue’s

• routine eagle timestep.c: why is entropy derivative zeroed if predictyed
entropy ¡ floor? Should it not be that entropy derivative cannot be
negative?

• routine eagle stellar evolution, line 232: number of SNe is calculated
by multiplying specific number by (initial) mass of star – there seems
to be a 1/h missing, since gadget masses are in h−1 mass units (cfr
similar calculation in routine eagle stellar feedback, line 172.

3

Chapter 3

The sub-grid model in EAGLE

3.1 Hydro and gravity

This section explains the equations that are being integrated, with a focus
on definitions of variables and their dependence on a (the expansion factor).

The equations we need to solve, those of a self-gravitating fluid, are the
continuity, Euler, energy and Poisson equations. They are respectively

∂ρ

∂t
+∇(ρv) = 0 (3.1)

∂

∂t
v + (v · ∇)v =−1

ρ
∇p−∇Φ (3.2)

ρ
∂

∂t
u+ ρ (v · ∇)u=−p∇v (3.3)

∇2Φ = 4πGρ . (3.4)

Here, u is the energy per unit mass, u = p/(γ − 1)ρ = kBT/(γ − 1)µmh.

To take into account the expansion of the Universe, we will write the
physical variables r (the position) and v (velocity) as perturbations on top
of a homogeneous expansion, by introducing the co-moving position x and
the peculiar velocity vp as

r = a(t)x

v = ṙ = ȧx + aẋ ≡ ȧx + vp . (3.5)

4

Here, a(t) is the scale factor of the expanding (background) cosmological
model. The velocity v is the sum of the Hubble velocity, ȧx = Hr, where
H = ȧ/a is Hubble’s constant, and a ‘peculiar’ velocity, vp = aẋ. In what
follows we will write co-moving variables with a hat to distinguish them from
physical variables. So r̂ = a−1 r = x, and also ∇̂ ≡ ∂/∂x = a∇.

The Euler equation written in terms of x and ẋ is

aẍ+ 2aȧẋ+ äx = −1

ρ
∇p−∇Φ . (3.6)

The ä x term drops-out by changing the potential from Φ to Ψ, defined as

Φ = Ψ +
2π

3
Gρb r

2 − 1

6
Λ r2 (3.7)

∇2Φ = 4πGρb r
2δ , (3.8)

where δ is now the over density, and ρb the mean density.
In Gadget II (and Gadget III), position and velocity1 are

Pos≡x (3.9)

Vel≡ a2dx

dt
(3.10)

The Gadget expressions for the equation of motion are then

dPos

dt
=

1

a2
Vel (3.11)

dVel

dt
=−a

∑ Gm

r2
− a∇p

ρ
., (3.12)

where r is still the physical position, and ∇ ≡ ∂r.

Time variables
Gadget uses the expansion factor a as time variable, d log a as the time step,
and uses integer stepping to get accurate times. The variables involved are

1Note this is true inside the code, see below for the definitions of variables stored in
snapshots.

5

Timebase interval≡ log TimeMax/TimeBegin

TIMEBASE
(3.13)

dtphys =
smoothinglength

c
(3.14)

dt step = dtphys ×
ȧ

a
= d log a (3.15)

ti step =
d log a

Timebase interval
. (3.16)

Here, TIMEBASE devides the logarithm of the ratio of abegin = TimeBegin
over amax = TimeMax, i.e. the value of the expansion factor at the end of
the simulation over its value at the start, in TIMEBASE equal steps, where
TIMEBASE is a power of two. dtphys is an example of a physical time step
(here the Courant step), this is multiplied by ȧ/da (the Hubble constant), to
obtain dt step=d log(a), the log of the change in expansion factor. Finally,
ti step is the integer time step that then corresponds to this physical time
step. The value of ti step is decreased until it is a power of two. The timestep
bin associated with this step is also recorded, ie 2bin=ti step.

Some useful conversions are then:
get time step from bin:

d log a= 2bin × Timebase interval (3.17)

dt=
d log a

h
(3.18)

get time step from a difference between two gadget time, All.Time and
dt = d log a
Some often used definitions

hubble≡ ȧ
a

(3.19)

(3.20)

Update of positions
In the predict routine, the Pos variables are updated as

∆ Pos = Vel
dt

a2
= Vel

∫ a2

a1

da

a3 h(a)
= Vel dtdrift (3.21)

dtdrift≡
∫ a2

a1

da

a3 h(a)
(3.22)

6

The time-step dtdrift is interpolated from a pre-computed table in routine
driftfac.c.

Gravity.
The gravitational forces returned by the PM and tree-code are

Accg =
∑ Gm

Pos2 . (3.23)

The update of velocities when kicked, in terms of the gravity acceleration
Accg, are thus

∆Vel =
1

a
Accg dt = Accg

∫ a2

a1

da

a2h
= Accg dtgrav kick (3.24)

dtgrav kick≡
∫ a2

a1

da

a2h
(3.25)

The time-step dtgrav kick is interpolated from a pre-computed table in routine
driftfac.c.

Hydro
The co-moving density, pressure, thermal energy, and entropy are related

to their physical values through

ρ̂= a3 ρ (3.26)

p̂= a3γ p (3.27)

û= a3(γ−1) u (3.28)

Ŝ=S (3.29)

ĉ= a3(γ−1)/2 c , (3.30)

where c2 = γp/ρ is the sound speed. Note that these definitions are some-
what arbitrary and other codes use other definitions. In particular these
definitions have the disadvantage that the velocity variable Vel, and the co-
moving sound-speed ĉ, have different dependencies on the expansion factor
a, hence for example the sum of velocity and sound-speed (as may appear in
the calculation of a signal velocity) should be performed as

aẋ+ c =
1

a
Vel + a−3(γ−1)/2 ĉ =

1

a

[
Vel + a1−3(γ−1)/2 ĉ

]
. (3.31)

7

Note further that p̂ = (γ− 1) ρ̂ û = Ŝ ρ̂γ, therefore the equation of state does
not change, and in particular ĉ2 = γp̂/ρ̂.

Changing to co-moving variables in this way, we find that

∇p
ρ

=
1

a a3(γ−1)

∇̂p̂
ρ̂

(3.32)

dVel

dt
=−a∇p

ρ
= − 1

a3(γ−1)

∇̂p̂
ρ̂

(3.33)

The hydro-acceleration returned by routine hydra are

Acch = −∇̂p̂
ρ̂
, (3.34)

and therefore the update of Vel due to hydro accelerations is

∆Vel = Acch
dt

a3(γ−1)
= Acch

∫ a2

a1

1

a h(a)a3(γ−1)
da

= Acch dthydro kick (3.35)

dthydro kick≡
∫ a2

a1

1

a h(a)a3(γ−1)
da . (3.36)

The time-step dthydro kick is interpolated from a pre-computed table in routine
driftfac.c.

The hydro accelerations as implemented in Gadget2 follow from

∇p
ρ

=
∇p
ρ
− p

ρ2
∇ρ , (3.37)

and the usual SPH way of finding smoothed quantities, such as

ρ(i) =
∑
j

mjWij (3.38)

Aiρi =
∑
j

mjAjWij , (3.39)

in terms of the kernel Wij and the sum over neighbours j. Therefore

dv

dt
= −∇p

ρ i

= −
∑
j

mj

[
pi
ρ2
i

∇Wi +
pj
ρ2
j

∇Wj

]
(3.40)

8

where Wi uses the smoothing length hi and vice versa for j. This is Eq. (7)
in the Gadget 2 paper (apart from the fi factors). The artificial viscosity
term used in Gadget 2 adds another term to the acceleration, which is

dv

dt
|visc =−

∑
j

mjΠij∇W (3.41)

Πij =−α
2

(ci + cj − 3wij)wij
ρij

(3.42)

wij =
vij · rij
rij

. (3.43)

These are equations (9) and (14) of the gadget 2 paper. I next describe
how these equations are implemented, following the naming convention of
Gadget 3, by introducing variables fac mu, vdotr2, mu ij

Note first that the kernel and its spatial derivative transform as

Ŵ = a3W (3.44)

∇̂Ŵ = a4∇W . (3.45)

For a spherically symmetric kernel, gradients are

∇W = r
1

r

∂W

∂r
. (3.46)

Next note that the relative radial velocity

v · r = (aẋ+ ȧx) · ax = a2ẋ · x+ a2hPos ≡ vdotr2 . (3.47)

9

The following gadget variables are then

fac mu = a−1 a3(γ−1)/2 (3.48)

mu ij =
fac mu vdotr2

Pos
(3.49)

= a3(γ−1)/2v · r
r

(3.50)

= a3(γ−1)/2wij (3.51)

v sig = (ĉi + ĉj − 3mu ij) (3.52)

= a3(γ−1)/2(ci + cj − 3wij) (3.53)

visc =
α

2

vsig (−mu ij)

ρ̂
(3.54)

=−a
3(γ−1)

a3

α

2

(ci + cj − 3wij)wij
ρij

(3.55)

=
a3(γ−1)

a3
Πij (3.56)

dwk i =
1

h4

1

q

∂W (q)

∂q
(3.57)

hfc =mj(visc + (
p̂i
ρ̂2
i

+
p̂j
ρ̂2
j

)
dwk ij

Pos
(3.58)

=
a3γ

a2

[
Πij +

p

ρ2

]
1

r

∂W

∂r

1

Pos
. (3.59)

Note that in the last line dwk i = a4 r−1∂W/∂r. Finally the hydro accelera-
tion is

Acch,x =−hfc ∆Pos x (3.60)

=−a a3(γ−1)

[
Πij +

p

ρ2

]
1

r

∂W

∂r

∆Pos x

Pos
(3.61)

=−a a3(γ−1) ∇p
ρ

∆Pos x

Pos
(3.62)

=−∇̂p̂
ρ̂

∆Pos x

Pos
(3.63)

as should be.

10

Entropy
Entropy, A = p/ργ, changes due to the action of the artificial viscosity term
changes the entropy at a rate (Eq. 10 in the GADGET paper)

dA

dt
=

1

2

γ − 1

ργ−1

∑
mΠijvij.∇W . (3.64)

The follows from energy conservation, where the change in thermal en-
ergy, u = ρ(γ−1)A/(γ−1) is due to viscous work done, du/dt = −(dv/dt)visc·
v. The factor 1/2 is due to the symmetrization of the velocity , v ≡ vj −vi.

Note first that

v · ∇W = vx
x

r

∂W

∂r
+ · · · (3.65)

= (v · r)
1

r

∂W

∂r
. (3.66)

Therefore

dÂ

dt
=
dA

dt
(3.67)

=
1

2

γ − 1

a−3(γ−1)

∑
mj

a3

a3(γ−1)
visc vdotr2

1

a5

1

r̂

∂Ŵ

∂r̂
(3.68)

=
1

a2

1

2

γ − 1

ρ̂γ−1

∑
hfc visc vdotr2 . (3.69)

The rate of change of entropy is stored in the variable

dtEntropy =
1

a2h

γ − 1

2

1

ρ̂γ−1

∑
j

hfc visc vdotr2 . (3.70)

=
1

h

dÂ

dt
, (3.71)

where the multiplication by (1/(a2h)) ((γ−1)/2)) (1/ργ−1) is performed out-
side the loop over j. Therefore Â is updated as

∆Â=
dÂ

dt
dt (3.72)

=
1

ȧ

dÂ

dt
da (3.73)

= dtEntropy
da

a
(3.74)

= dtEntropy dt step . (3.75)

11

Note in particular that indeed dt step = da/a as explained before.
Curl and divergence
The density routine calculates curls and gradients as follows. First note that

∇ρv =∇ρ · v + ρ∇ · v (3.76)

∇ · v =
1

ρ
(∇ρv −∇ρ · v) (3.77)

(∇ · v)i =
1

ρi

∑
mj(v · r)

1

r

∂W

∂r
, (3.78)

where the last line is the corresponding SPH expression.
Note that in an expanding Universe, where the peculiar velocity vp ≡ aẋ,

∇ · v = 3
ȧ

a
+ a∇ · ẋ = 3h+∇ · vp . (3.79)

Note that Pos · Vel = x · a2ẋ = r · vp, therefore the divergence of the
peculiar velocity in SPH is

(∇ · v)p =
1

a−3ρ̂i

∑
j

mj (Pos · Vel)
1

a5

1

r̂

∂Ŵ

∂r̂
(3.80)

=
1

a2
DivVel . (3.81)

The last line introduces the Gadget variable DivVel. I see no reason why the
term 3h is missing from the calculation of the divergence.
Update of smoothing lengths
The smoothing length and the density are obtained from solving the following
intrinsic equation

4π

3
ρ h3 = NSPH m̄ . (3.82)

If we have a guess h0 of the smoothing length, which gives a current
particle weight N0, and a density ρ0, we can try to improve the guess by
starting from the equation for the SPH density,

ρ =
∑
j

mj
1

h3
W (q) , (3.83)

12

where q = r/h. For this, the derivative

∂ρ

∂h
=
∑
j

mj

[
− 3

h4
W − q

h4

∂W

∂q

]
(3.84)

=−
∑
j

mj

[
3

h
kernel.Wk +

q

h
kernel.dWk

]
. (3.85)

This quantity is calculated in the density loop, together with ρ and N0 (the
current particle weight). Let the desired smoothing length be hi, and the
corresponding density ρi, then ρi = ρ0 + (∂ρ/∂h) (hi − h0), and, since ap-
proximately ρi h

3
i /Ni = ρ0 h

3
0/N0, we get

ρ0h
3
0 =

N0

Ni

h3
i (3.86)

=
N0

Ni

h3
i

[
ρ0 +

∂ρ

∂h
(hi − h0)

]
(3.87)

=
N0

Ni

[h0 + ∆h]3 +

[
ρ0 +

∂ρ

∂h
∆h

]
(3.88)

≈ N0

Ni

ρ0 h
3
0

[
1 +

3∆h

h0

] [
1 +

∂ρ

∂h

∆h

ρ0

]
, (3.89)

where ∆h ≡ hi − h0, or, in terms of ε ≡ ∆h/h0,

ε=
Ni −N0

N0

1

3 + h0

ρ0

∂ρ
∂h

(3.90)

hi =h0 (1− N0 −Ni

3N0

)
1

1 + h0

3ρ0

∂ρ
∂h

. (3.91)

Note that the ”3” is actually the number of dimensions. This way of updating
h is used in the density calculation, and it improves the rate of convergence
especially when close to the right answer. For some reason, it is not used in
the calculation of densities (or smoothing lengths) for stars or black holes.

3.1.1 Time steps

The time step for the particles is compute in physical units and then con-
verted to comoving d log(a) values. This conversion is described at the be-
ginning of section 3.1. This subsection describes the time steps used by the

13

gas particles in physical units.

On top of the usual riterion for gravity acceleation and time steps, the
code uses the Courant condition. For each particle, the signal velocity vsig,i
is computed in the density loop. The time step size is then given by the CFL
condition on the resolution element of size hi:

∆ti = 2CCFL
hi
vsig,i

a

a3 γ−1
2

. (3.92)

The last factor contains the terms relating to the expansion rate of the
Universe.
In EAGLE, we use an additional limiter to avoid particles getting an ar-
bitralrily large smoothing length due to inaccurate prediction in time. The
prediction of the evolution of the smoothing length is done on the basis of the
divergence of the velocity field of the gas and can be quite noisy. To avoid
spurious values, we forbid particles to be inactive for a time over which their
smoothing length would grow by more than a given factor. This constraint
can be expressed in the form of a maximal timestep:

∆ti = 3 ln (α) · (∇ · v)i ·
a

a3 γ−1
2

. (3.93)

α is the maximal change in h allowed and is called MaxSmoothingLength-
Change in the code. A value of 1.26 will imply that a particle cannot change
its volume by more than a factor of 2 ≈ 1.263 over the course of one single
time step.

The smallest of those two time steps is then use as the time step of this
gas particle.

14

3.2 Anarchy

3.2.1 Hydrodynamics

Main equations

Given the discrete quantity xi, its smoothed, SPH value (namely its density)
at position ri is

yi =
N∑
j=1

xjWij (3.94)

where the sum is over N neighbours, and

Wij ≡ W (|ri − rj|, hi) , (3.95)

is the SPH kernel. Therefore, one can define the volume associated to xi as

Vi =
xi
yi

(3.96)

For example the SPH density is

ρSPH =
∑
j

mjWij . (3.97)

The generalised, SPH equation of motion is (Hopkins, 2012)

mi
dvi
dt

=
N∑
j=1

Pj

(
∇iVj + ψj∇iṼj

)
(3.98)

where ψj is the correction term for variable smoothing length

ψj =
hj

nDṼj

∂Vj
∂hj

[
1− hj

nDṼj

∂Ṽj
∂hj

]−1

(3.99)

and nD is the number of spatial dimensions; Ṽj = x̃j/ỹj is the particle volume,
which defines the number of neighbours, thus the smoothing length; Vj =
xj/yj

Substituting ψj, Ṽj and Vj with their definitions, equation ?? can be
written as

mi
dvi
dt

= −
N∑
j=1

xixj

[
Pi
y2
i

fij∇iWij +
Pj
y2
j

fji∇jWij

]
(3.100)

15

where

fij = 1− x̃j
xj

(
hi
nDỹi

∂yi
∂hi

)[
1 +

hi
nDỹi

∂ỹi
∂hi

]−1

(3.101)

Assuming x̃i = mi (the particle mass), we obtain ỹi = ρi (the particle
density), and the particle volume is then

Ṽi = mi/ρi (3.102)

We define the variable

A
1/γ
i ≡ P 1/γ

ρ
, (3.103)

where Ai is the particle entropy (or entropic function), so P = Aργ. Assum-

ing xi = miA
1/γ
i and yi =

∑N
j=1mjA

1/γ
j , we can define the volume

Vi =
miA

1/γ
i∑N

j=1mjA
1/γ
j Wij

=
mi

A
−1/γ
i

∑N
j=1mjA

1/γ
j Wij

(3.104)

As one can immediately see,

ρA(i) ≡= ρ̄i =

∑N
j=1mjA

1/γ
j Wij

A
1/γ
i

=
yi

A
1/γ
i

= mi
yi

miA
1/γ
i

= mi
yi
xi

(3.105)

has the dimensions of a density. Moreover, yi defines the smoothed pressure
through the relation

P̄ = yγi (3.106)

16

Rewriting equation ?? as

mi
dvi
dt

=−
N∑
j=1

xixj

[
Pi
y2
i

fij∇iWij +
Pj
y2
j

fji∇jWij

]
(3.107)

=−
N∑
j=1

xixj

[
m2
ix

2
i

m2
ix

2
i

Pi
y2
i

fij∇iWij +
m2
jx

2
j

m2
jx

2
j

Pj
y2
j

fji∇jWij

]
(3.108)

=−
N∑
j=1

mimj
xi
mi

xj
mj

[
m2
i

x2
i

Pi
(miyi/xi)2

fij∇iWij+

m2
j

x2
j

Pj
(mjyj/xj)2

fji∇jWij

]
(3.109)

=−
N∑
j=1

mimj

[
mi

xi

xj
mj

Pi
(miyi/xi)2

fij∇iWij+

xi
mi

mj

xj

Pj
(mjyj/xj)2

fji∇jWij

]
(3.110)

With a simple substitution we obtain

dvi
dt

=−
N∑
j=1

mj

[
A

1/γ
j

A
1/γ
i

P̄i
ρ̄2
i

fij∇iWij +
A

1/γ
i

A
1/γ
j

P̄j
ρ̄2
j

fji∇jWij

]
(3.111)

The terms fij and fji are given by equation ??:

fij = 1− x̃j
xj

(
hi
nDỹi

∂yi
∂hi

)[
1 +

hi
nDỹi

∂ỹi
∂hi

]−1

(3.112)

= 1− 1

A
1/γ
j

(
hi
nDρi

∂P̄
1/γ
i

∂hi

)[
1 +

hi
nDρi

∂ρi
∂hi

]−1

(3.113)

= 1− 1

A
1/γ
j

ζP,iζD,i = 1− A
1/γ
i

A
1/γ
j

f̃i (3.114)

where

f̃i =
1

A
1/γ
i

ζP,iζD,i (3.115)

and

ζP,i =
hi
nDρi

∂P̄
1/γ
i

∂hi
and ζD,i =

[
1 +

hi
nDρi

∂ρi
∂hi

]−1

(3.116)

17

Substituting in equation ??,

dvi
dt

=−
N∑
j=1

mj

[(
A

1/γ
j

A
1/γ
i

− f̃i

)
P̄i
ρ̄2
i

∇iWij +

(
A

1/γ
i

A
1/γ
j

− f̃j

)
P̄j
ρ̄2
j

∇jWij

]
(3.117)

which is the equation in the code.
Alternatively, one could define the volume by using the particle number

density

ni =
N∑
j=1

Wij (3.118)

This is equivalent to using x̃ = 1 and ỹ = ni =
∑N

j=1Wij, and the particle
volume is then

Ṽ =
1∑N

j=1 Wij

=
1

ni
(3.119)

Equation ?? remains unchanged, while the term fij becomes

fij = 1− x̃j
xj

(
hi
nDỹi

∂yi
∂hi

)[
1 +

hi
nDỹi

∂ỹi
∂hi

]−1

(3.120)

= 1− 1

mjA
1/γ
j

(
hi
nDni

∂P̄
1/γ
i

∂hi

)[
1 +

hi
nDni

∂ni
∂hi

]−1

(3.121)

= 1− 1

mjA
1/γ
j

ζ ′P,iζ
′
D,i = 1− A

1/γ
i

A
1/γ
j

f̃ij (3.122)

where

f̃ij =
1

mjA
1/γ
i

ζ ′P,iζ
′
D,i (3.123)

It is trivial to show that, for equal mass particles,

ζP,i = ζ ′P,i/mj ζD,i = ζ ′D,i (3.124)

Substituting in equation ??,

dvi
dt

=−
N∑
j=1

mj

[(
A

1/γ
j

A
1/γ
i

− f̃ij

)
P̄i
ρ̄2
i

∇iWij +

(
A

1/γ
i

A
1/γ
j

− f̃ij

)
P̄j
ρ̄2
j

∇jWij

]
(3.125)

18

Implementation

Implementation details refer to svn version 24524.
EntropyVarPred
predict.c

The variable SphP[i].EntropyPred is used as entropy variable. It is calculated
from the predicted entropy in predict.c as

SphP[i].EntropyVarPred ≡ A
1/γ
i defined in Eq. ??, and calculated in predict.c l=198 .

(3.126)
density.c

The ‘weighted density’ρ̄i from Eq. (??) is calculated as

SphP[i].cky.WeightedDensity≡ ρ̄i (3.127)

=
∑
j

mj wk ∗ SphP[j].EntropyVarPred

(l=2220) (3.128)

/ SphP[i].EntropyVarPred l=1082 , (3.129)

where mj wk = P[j].Mass×W(rij/hi) (l=2205), with the kernel evaluated in
kernel.h.

Cooling and equation of state
The internal energy ui is derived from the particle’s entropy Ai(t + ∆t) =
Ai(t) + Ȧi ∆t and its anarchy density ρA as

u(t) =
Ai(t+ ∆t) ργ−1

A

γ − 1
, (3.130)

eagle cooling.c l=139. Cooling integrates

ρSPH
du

dt
= −Λnet(u) ρ2

SPH , (3.131)

eagle cooling.c l=161, which leads to a new thermal energy unew. This
is converted back to a new entropy using Eq. (??).

Note that we cool at ‘constant’ ρA, whereas without pressure-entropy we
cool at constant ρSPH, but that nevertheless ρA would be different if we re-
computed the density.

19

Above a given density threshold, gas is moved onto an imposed pressure-
density relation to avoid artificial fragmentation. The shape of the imposed
eos, and of the minimum entropy, is

p= peos (ρ/ρeos)
γeos (3.132)

peos = (γ − 1) ρeos (kB Teos/((γ − 1)µmH) (3.133)

S=
p

ργ
=
p0

ργ0
(
ρ0

ρ
)γ−γeos . (3.134)

The input parameters that describe this are

1. the minimum physical density, ρmin=EOS Jeans MinPhysDens HpCM3

2. the minimum physical over density, ∆min=EOS Jeans MinOverDens

3. the temperature at the start of the eos, Tmin =EOS Jeans TempNorm K

4. the slope of the EOS, γeos=EOS Jeans GammaEffective

There is a similar set of parameters to impose a minimum temperature.
These get written in a form such that

p = peos

(
ρ

ρeos

)γeos
, (3.135)

The entropy is not allowed to be lower than

Ai ≥ peos

(
ρSPH

ρeos

)γeos 1

ργSPH

. (3.136)

Having obtained the new entropy, we update Ȧi.
Arguably we should use ρA here, since it is this density that determines

pressure forces and hence artificial fragmentation.

Star formation
The star formation rate is given by Eq. (??) and is zero if the particle is not
dense enough or too hot. The limits are calculate in eagle sfr.c at l=468
and l=477 for density, and l=480 for entropy:

ρSPH≥ ρthreshold

A≤Amax . (3.137)

20

The entropy floor is also calculated using ρSPH. Of the particle is deemed to
be star forming, its star formation rate is ∝ (γp

G
)(nKS−1)/2 , where the pressure

p = A(t) ργA is computed in predict.c l=325.

Stellar feedback
Having calculated the change in specific energy of a particle due to feedback,
∆ucgs, the particle’s properties are updated in anarchy energy injection.c.
The pre-feedback u is calculated from

uold =
A(t+ ∆t) ργ−1

A

γ − 1
, (3.138)

with the new thermal energy

unew ≡ uold + ∆u . (3.139)

Note that anarchy energy injection.c uses programme units, not cgs units.
Note that uold uses the predicted entropy and the anarchy density. We then
iterate updating the new entropy and density according to

An+1 =
(γ − 1)unew

ργ−1
A,n

ρA,n+1 =
ρnA

1/γ
n −mW (0)A

1/γ
n +mW (0)A

1/γ
n+1

A
1/γ
n+1

, (3.140)

until the relative difference between ρn+1 and ρn, and the same for A, is less
than 10−6, or there are more than 10 iterations. Once this is converged,
we update A, ρA, and the pressure, p ∝ ργA. (Note there is no entropy floor
check here, since presumably entropy increases.) Note that this is not correct,
in the sense that the change in thermal energy (in the whole box) is not m∆u.

Black hole accretion and feedback
We start by calculating an ‘entropy’ at the location of a black hole by calcu-

21

lating

ρBH,SPH ≡ BH.b1.dBH Density =
∑
j

mjWj (l=2207, 479)

ABH ≡ BH.b2.dBH Entropy =
∑
j

mjWj, A(t)j (l=2539,480)

/ ρBH,SPH (l=1302)

ρA ≡ BH.b11.dBH Weighted Density =
∑
j

mjWj A
1/γ
j (l=2220,483)

/ A
1/γ
BH (l=1308) . (3.141)

The sound speed and density for use in the accretion rate are

cs ≡ soundspeed =
(
γ ABH ρ

γ−1
BH,SPH

)1/2
(l=199)

ṁ∝ m2 ρBH,SPH

(c2
s + v2)3/2

(l=210)

It is the value of cs that is reported in the log file. Energy injection uses the
same routine as stellar thermal feedback.

3.2.2 Artificial viscosity

3.2.3 Entropy diffusion

3.2.4 Energy injection

3.2.5 Black hole growth and feedback

Implementation details refer to SVN version 24344

Gas properties at BH position

In the following, the subscript BH identifies local gas proper ties at the black
hole position.

In Anarchy, the conversion from entropy to internal energy needs the (en-
tropy) weighted density, ρ̄, defined in equation (??). Therefore, to compute
the local sound speed, cs,BH, the black hole structure must hold the weighted
density, ρ̄BH, and the local (average) entropy, ABH.

22

The density is computed in density.c [line 2197] as done for gas parti-
cles, and stored in BPP(i).b11.BH Weighted Density [lines 483, 1040,

1308].
The mass weighted entropy at BH position is also computed in density.c

[line 2197], and stored in BPP(i).b2.BH Entropy [lines 480, 1036,

1302].
In eagle blackhole.c, the sound speed is computed as follows. De-

pending on whether PE-SPH is used or not, the variable weighted density

holds either BPP(i).b11.BH Weighted Density or BPP(i).b1.BH Density

[lines 183-188]. Note that the density is physical, and converted with
the proper a−3 factor. Therefore, the black hole local sound speed is simply
[line 199]

soundspeed = sqrt(GAMMA ∗ BPP(n).b2.BH Entropy ∗
pow(weighted rho, GAMMA MINUS1)) , (3.142)

(see also [lines 357-365, 738-746]). This are all the changes needed for
black holes growth.

Black hole feedback

The only change in eagle bhfeedback.c regards the injection into gas par-
ticles of the black hole feedback energy. This is done by using the function
anarchy energy injection(j, delta u) [line 619], where j is the gas
particle index, and delta u is the injected energy in physical, code units.
The description of the injection method is below.

Issues

When compiled with EAGLE DETACH BH DENSITY the code does not compute
the black hole weighted density in eagle blackhole density.c. The calcu-
lation is indeed missing in eagle blackhole.c. However, this function is re-
dundant, as gas properties around the black holes are computed in density.c

regardless of the above compilation flag.

3.2.6 Feedback energy injection

Internal energy changes due to feedback are implemented by using the func-
tion anarchy energy injection(i, delta u) in anarchy/anarchy energy injection.c.

23

The function takes the particle index i and the amount of internal energy
change delta u (∆u) as arguments.

Energy injection proceeds iteratively by computing the new value of the
entropy, and adjusting the weighted density (which is a function of en-
tropy) to it. We know the current value of the particle internal energy,
ui = 1

γ−1
Aiρ̄

γ−1
i , and we know its value, u′i = ui + ∆u, after the feedback

event. We also know the initial weighted density, ρ̄i,0, and entropy, Ai,0. The
iterateive method follows:

1. a guess of the new entropy is computed as Ai,1 = (γ − 1)u′iρ̄i,0;

2. the weighted density is corrected according to the change to the particle
weight in the density estimate, miAi:

ρ̄i,1 =
1

A
1/γ
i,1

[
ρ̄i,0A

1/γ
i,0 −mi(A

1/γ
i,0 − A

1/γ
i,1)Wii(0, hi)

]
; (3.143)

3. convergence is checked for both density and entropy, requiring that the
variation from the previous iteration is smaller than TOLERANCE.

4. if the above criterion is not verified and the number of iteration is
smaller than MAX ITER, set ρ̄i,0 = ρ̄i,1 and Ai,0 = Ai,1 and restart from
(1).

The values of TOLERANCE and MAX ITER are 10−6 and 10, respectively.

Issues

The problem with the above method is that it does not take into account
variations of internal energy of nearby particles. This may results in wrong
estimates of the weighted densities. The best solution is to use the pressure-
energy formulation of SPH.

Let’s assume that ∆u� uj, and only particle i receives energy. The self-
contribution term in the computation of the weighted density will dominate
the sum, and we can then approximate the particle weighted density to

ρ̄i =
1

A
1/γ
i

N∑
j=1

mjA
1/γ
j Wij ' miWii. (3.144)

24

This is what happens applying the above iterative method. Moreover, when
several neighbours receive energy, the change of their entropy is not ac-
counted.

On the other hand, if n neighbours received the same large amount of
energy, to some order, the weighted density of particle i should become

ρ̄′i =
1

A
1/γ
i

N∑
j=1

mjA
1/γ
j Wij '

1

A
1/γ
i

n∑
k=1

mkA
1/γ
k Wik ∼ nmiWii. (3.145)

Let’s now suppose that, at a give time, the entropy of particle i is mod-
ified by using the iterative method. The particle has now density ρ̄i, as in
equation (??). The particle internal energy, just after energy injection, is
then

ui =
1

γ − 1
Aiρ̄

γ−1
i . (3.146)

The internal energy is conserved, but only with the particular combination of
density and entropy in which neighbours are assumed to keep their entropy
unchanged during the same time-step.

Let’s suppose the above assumption does not hold, and several to many
neighbours of particle i changed their entropy during the same time-step.
If particle i becomes active in the next time-step, its density is updated in
density.c. Its new density is ρ̄′i, as in equation (??). This can be much
larger than ρ̄i , as several to many neighbours of particle i have just been
affected by feedback (typical case in black hole feedback). Therefore, the
internal energy of particle i is

u′i =
1

γ − 1
Aiρ̄

′γ−1
i � ui. (3.147)

This may explain why black hole feedback is so efficient in pressure-entropy
runs.

25

3.2.7 Effective equation of state

3.2.8 Star formation rate

3.2.9 Cooling

3.3 Cooling

In EAGLE , cooling and photo-heating rates are interpolated from tables.
At higher densities, particles are required to have a minimum entropy, which
depends on density. One is to impose a given p−ρ relation, p = p0 (ρ/ρ0)γeos ,
or equation of state, mimicking ISM gas, and at even higher density there is
a limit to make sure the Jeans mass, MJ , keeps being resolved with the same
number of particles. Since MJ ∝ T 3/2/rho1/2, this corresponds to γeos = 4/3.
The imposed eos has then 4 parameters specified in the parameter file:

• ρeos, the physical density above which the eos is imposed

• ∆eos, a minimum over density above which the eos is imposed

• Teos, the temperature at the eos threshold

• γeos, the slope of the imposed p− ρ, relation

The shape of the eos, and of the minimum entropy, is thus

p= peos (ρ/ρeos)
γeos (3.148)

peos = (γ − 1) ρeos (kB Teos/((γ − 1)µmH) (3.149)

S=
p

ργ
=
p0

ργ0
(
ρ0

ρ
)γ−γeos . (3.150)

The eos is imposed at relatively high density, where the temperature is
so high the gas is mostly (collisionionally) ionised. Hence the code assumes
the mean molecular weight to be µ = 0.59, which is hard-coded in terms of
a defined parameter MeanMolIonized in allvars.h.

3.4 Star formation

See Schaye & Dalla Vecchia 08. Asumme a Kennicut-Schmidt law of the
form

Σ? =

{
0, for Σg < Σc

AKS (Σg
1M� pc−2)nKS , for Σg ≥ Σc

(3.151)

26

Figure 3.1: Temperature-density relation as z = 7.25, for a L003N063 run
with assumed abundance of 0.1 Z� gas. Green and yellow curves are the
equilibrium temperatures for metal free and solar abundances, respectively.
Imposed ‘cooling’ and ‘Jeans’ EOS are shown by blue and red lines, respec-
tively. Vertical lines denote the over density threshold (which is the same
for both), and an imposed eos runs from ρeos to high densities. In this case
you see the over-density limit, which does not allow the gas to be below
the horintal blue line, once it passes the vertical blue line, which sets in at
ρ ≈ 10−3 cm−3. At higher density, ρ = 10−1 cm−3, the imposed ‘Jeans’
eos takes over. Note that tghe particles do not follow the imposed lines ex-
actly, because the particle’s mean molecular weight is not exactly equal to
MeanMolIonized .

27

Figure 3.2: Same as Fig.??, but at z = 3.0. Note how gas at ρ ∼ 10−4 cm−3

tracks just above the solar equilibrium curve.

28

where AKS = (2.5± 0.7) × 10−4M � yr−1 kpc−2 and nKS = 1.4± 0.15. In a
hydrostatic disc galaxy this requires a specific star formation rate of

ṁ?

mg

≡ 1

t?
= AKS (1M� pc−2)−nKS (

γp

G
)(nKS−1)/2 , (3.152)

where numerically

t? = 1.67× 109 yr (
p/kB

103 cm−3 K
)−0.2 , (3.153)

for nKS = 1.4 and AKS = 2.5 × 10−4M � yr−1 kpc−2. Above a threshold
density ρ?,KS, the index of the power law steepens to n′KS.

In EAGLE gas particles are only star forming, within limits on physical
density, over density and entropy. If the particle falls within these limits, its
‘eos’ flag = 1 and the particle is eligible for star formation. In practise

• ρ > ρ?: the physical density needs to be sufficiently high

• ∆ > ∆?: the over density needs to be sufficiently high

• S < Seos 10∆Tdex : the gas needs to b sufficiently cold.

The physical threshold ρ? depends on metallicity as

ρ? > min

{
ρ0,?, ρm,? (

Z

0.1× 0.02
)αz
}

(3.154)

Eq. (??) is implemented in routine eagle get eos flag: Z is the particle’s
metallicity. For Z = 0 we use a fixed threshold ρ0,?, for Z > 0, the threshold
increases ∝ Zαz . At z = 0.1× 0.02 (or ‘ten per cent solar), the threshold is
ρm,?.

3.5 Stellar feedback

3.5.1 Virial temperature calculation

Tvir from dark matter velocity dispersion

Routine eagle stellar feedback set tvir from dm velocity dispersion calculated
the DM velocity dispersion of active stars, within a smoothing length. The

29

Figure 3.3: Specific star formation rate, ρ̇?/ρ, as function of pressure of the
gas. Dashed line is the imposed KS-law, with thresholds for star formation
imposed: cyan triangle: over density threshold, red traingle: imposed eos
threshold, circles: thresholds for abundances of [1, 0.5, 10−1, 10−2, 10−3, 0] ×
Z�, respectively cyan, orange, blue, green, red, and black. Squares are results
from the simulation, with the same colours. Different metallicity points are
offset vertically for clarity. The ssfr computed in the simulation follows the
imposed KS-law and metallicity thresholds.

30

Figure 3.4: ρ−p relation along the imposed equation of state. Star formation
density thresholds are indicated in colour (circles) for various metallicities in
units of Z�. Squares are results from the simulation, with the same colours.
Different metallicity points are offset vertically for clarity. Star formation fol-
lows the imposed EOS, as well as tge imposed metallicity dependent density
thresholds.

31

Figure 3.5: Total (initial) stellar mass as function of redshift, as computed
in eagle sfr (black), from the snapshots (red), and obtained by integration
the computed star formation rate for gas particles (blue).

32

smoothing length itself is not stired, and calculated only once, as the radius
within which the number of (kernel-wegihted) neighbours is NNB Mult times
All.DesNumNgb. NNB Mult is defined in the file itself (eagle stellar feedback set tvir)
and All.DesNumNgb is an input parameter. It may make sense to decrease
the noisy estimate of the velocity dispersion by increasing the number of
weighted numbers above the default 48 by taking NNB Mult=4, for exam-
ple. The routine calculates the standard deviviation of the DM velocities (in
code units), then converts this to a physical value, σv, and uses it to assign
a virial temperature as (see eagle compute tvir from veldisp)

Tvir =
µionmproton

3 kB

σ2
v , (3.155)

where µion = 4/(8 − 5 ∗ 0.248) is defined as the mean molecular weight
for ionised primordial gas with a He abundance of 0.248 by mass (defined
in allvars.h), mproton = 1.6726 × 10−24 is the proton mass in g (defined in
allvars.h), kB = 1.38066× 10−16 is Boltzmann’s constant in erg K−1 (defined
in allvars.h).

Tvir from virial mass, M200 and R200.

The virial mass, M200, is defined such that the mean density within the
corresponding virial radius, R200 is 200 times the critical, density, ρc, hence

M200

(4π/3)R3
200

= 200 ρc = 200
3H2

8π G
(3.156)

R200 = (
GM200

100H2
)1/3 , (3.157)

The leads to a definition of the virial temperature, by using the virial
theorem to demand that

2M200
3 kBT

2µmproton

=
GM2

200

R200

. (3.158)

Combining these gives

Tvir =
µionmproton

3 kB

(10GH(z)M200)2/3 , (3.159)

where M200 is the halo mass in g, G = 6.672 × 10−8 Newton’s gravitational
constant in g−1 cm3 s−2 (defined in allvars.h), H(z)is the Hubble constant at

33

redshift z, is calculated as H(z) =HUBBLE All.HubbleParam E(z), where
HUBBLE = 3.2407789 × 1018 = 100 km Mpc−1 in s (defined in allvars.h),
E(z) = (Ωm (1+z)3+ΩΛ)1/2 is computed in set cosmo factors for current time),
and h=All.HubbleParam is the Hubble parameter. For reference, H(z) and
E(z) are available as All.cf Hz and All.cf Ez, set in that same routine.

Relation between σv and M200

Combining the two expression for Tvir yields the following relation between
(3D) velocity standard deviation σv and halo mass M200:

σ2
v = (10GH(z)M200)2/3 =

GM200

R200

, (3.160)

which is again the virial theorem: 2× (1/2)M200 σ
2 = GM2

200/R200.

Virial temperature derived from the FOF mass

The code does not use M200 but instead uses MFOF. The friends-of-friends
mass and corresponding radius are such that the density at the edge of the
FOF halo is b−3 times the mean matter density ρ̄m, where b ∼ 0.2 is the
linking length. The mean matter density is

ρ̄m = Ωm ρc = Ωm
3H2

0

8πG
(1 + z)3 . (3.161)

To estimate MFOF we need to assume a density profile. Assume this is
isothermal, ρ(r) = ρFOF (RFOF/R)2. Then

MFOF = 4π ρFOF R
3
FOF , (3.162)

and since ρFOF = b−3 ρ̄m is the density at the FOF halo’s edge, we find
MFOF/(4π/3R

3
FOF) = 3ρFOF = 3ρ̄m b

−3.
In this case, we find

RFOF =

(
GMFOF

(3/2b3) ΩmH2
0 (1 + z)3

)1/3

. (3.163)

We can now define a fudge parameter α such that

2
3 kBTvir

2µmproton

= α
GMFOF

RFOF

. (3.164)

34

Following the derivation as above then gives

Tvir = α
µionmproton

3 kB

(
3

(2b3)1/2
GMFOF Ω1/2

m H0 (1 + z)3/2

)2/3

. (3.165)

Comparing with Eq. (??) shows that the redshift depedence is the same in
an EdS Universe (H(z) =

√
ΩmH0 (1 + z)3/2 for the high-z approximation).

For backwards compatibility we can choose α such that the virial temper-
atures are the same, i.e. that the values of the virial temperature obtained
from Eq. (??) and Eq. (??) are the same at a given redshift z.

In terms of H(z) ≡ H0E(z), this yields a value of α of

α=

(
10E(z)

(3/2b3)1/2 Ω
1/2
m (1 + z)3/2

)2/3

(3.166)

= 0.89 , (3.167)

for b = 0.2, Ωm = 0.272, ΩΛ = 1− Ωm and z = 1.

3.5.2 Energy fraction

We want to make the fraction of SN energy that goes into feedback depend
on a property of the halo. The short-drop family of models uses a dependence
directly on halo mass, MFOF only, as follows

ε(MFOF) =

(
logMFOF

logMc

)s
(3.168)

εmin < ε < εmax , (3.169)

where Mc = 1011M� s = −26.463, εmin = 0.1 and εmax = 1 are input
parameters, with the numerical values corresponding to short drop. Note
especially the ratio of logs, as opposed to the log of a ratio M/Mc. This
curve is shown in Fig.??, together with a ‘linear’ fit

ε= ε0 + p log(
MFOF

M0

) (3.170)

ε0 = 0.8 (3.171)

logM0 = ε
1/s
0 logMc = 11.0391 (3.172)

p= (εmax − εmin)/(logMmin − logMmax) = −0.9 . (3.173)

35

Here, ε(logMmin,max) = εmax,min, and the numerical values correspond to the
short drop model.

We want to write this fit in terms of Tvir instead of mass. Using Eq. (??),
this leads us to define T0 as

T0 =α
µionmproton

3 kB

(
3

(2b3)1/2
GM0 Ω1/2

m H0

)2/3

(3.174)

= 1.1× 105K , (3.175)

in which case

ε(Tvir) = ε0 +
3 p

2
log(

Tvir

T0

) . (3.176)

Note that this relation is now redshift dependent, since Tvir ∝M
2/3
FOF (1 +

z). The value of T0 is chosen such that the relations are the same at z = 0.
To make the relation redshift independent (i.e. get the result from Eq.??),
replace the pervious relation by

ε(Tvir, z) = ε0 +
3 p

2
log(

Tvir

T0 (1 + z)
) . (3.177)

It might be worth generalising the last redshift dependence to give us
more freedom in tuining the feedback, by introducing a new parameter β as

ε(Tvir, z) = ε0 +
3 p

2
log(

Tvir

T0 (1 + z)β
) . (3.178)

A value of β = 0 corresponds to feedback dependent on virial tempera-
ture, β = 1 corresponds to feedback depending in FOF mass.

3.5.3 Type II SNe

3.5.4 Type I SNe

3.5.5 AGB stars

As these stars transfer mass, they also transfer energy since the velocities v?
and vgas of star and gas particle are not the same. We therefore want to add
momentum, kinetic energy, and potentially thermal energy, of the accreted
particles to the accreting particle. Let the initial mass, velocity, and specific

36

Figure 3.6: Used super nova energy as function of MFOF for the short drop
parameters (black) compared to a linear fit (red). The slope of the linear fit
is determined such that the red line is parallel to the line through the points
(εmax, logMmin) and (εmin, logMmax), where for example logMmin is the value
of MFOF below which ε = εmax. The red fit has ε = 0.8 for the same value of
MFOF as the short drop model.

37

thermal energy of the gas particle be M , V, and U , and let mi, vi and ui be
the same for the amount of accreted material, for i = 1 · · ·N .

Therefore conservation of mass & momentum yields

MN =M +
∑

mi (3.179)

MNVN =M V +
∑

mi vi (3.180)

When a particle is accreted with specific energy ui, we want to add mi ui
to the total thermal energy of the accretor. We can do this event by event,
and still be indepedent of order (and hence number of cores, for example),
by updating as follows

Mi+1 =Mi +mi (3.181)

Ui+1 =
Mi Ui +mi ui

Mi+1

, (3.182)

then after all N events MN = M +
∑
mi, and MM UN = M U +

∑
mi ui, as

required.
To conserve energy, we want

1

2
MN V2

N + ∆E =
1

2
M V2 +

∑
i

1

2
mi v

2
i , (3.183)

where we should add the missing kinetic energy ∆E to the thermal energy
of the final gas particle. For example the addition of one particle increases
the thermal energy of the accreting particle by

∆E =
1

2

M m1

M +m1

(V − v1)2 > 0 . (3.184)

Remember that in GADGET the velocity variable is a2 dx/dt whereas
the peculiar velocity (which enters in the equations above) is adx/dt, so the
missing energy then contains a factor 1/a2.

We can also take into account the thermal energy of the accreted matter,
which then leads to

1

2
MN V2

N + ∆E =
1

2
M V2 +

∑
i

1

2
mi v

2
i +

∑
i

mi ui . (3.185)

38

Taking into account the dependence of the various quantities on the scale
factor a, and denoting programme values as û, say, then gives

kinetic energy = h−1 UM U2
V a

2 1

2

∑
m̂ v̂2 , (3.186)

and

thermal energy = h−1 UM U2
V

∑
m̂
Ŝ (a−3ρ̂)γ−1

γ − 1
. (3.187)

In the code, we can update the momentum of the gas particle event by
event, but we use an array Energy[i] for each SPH particle to compute
the right hand side in in Eq. (??). After having computed the new kinetic
energy, (1/2)MN V2

N , we can now compute the change in energy ∆E, and
hence compute the change in entropy.

3.5.6 Black holes implementation

Basic equations

The Eddington luminosity of a BH with mass MBH is

LEdd =
4πGMBHmpc

σT

(3.188)

where σT is the Thomson cross section. The Bondi-Hoyle-Littleton accretion
rate in gas of density ρ and sound speed cs, moving at speed v with respect
to the BH, is

Ṁacc = α
4πG2M2 ρ

(c2
s + v2)3/2

, (3.189)

where α is a dimensionless efficiency parameter.
The increase in mass of the BH, ṀBH, and the radiative energy released,

L̇, are then related by

ṀBH = (1− εr) Ṁacc (3.190)

L̇= εr Ṁacc c
2 , (3.191)

where εr ≈ 0.1 is the radiative efficiency.
The energy production L̇ is limited by the Eddington luminosity, so that

L̇≤LEdd (3.192)

Ṁacc =
ṀBH

1− εr
≤ 4πGMBHmpc

σTεrc2
. (3.193)

39

Figure 3.7: Total (initial) stellar mass as function of redshift (black dashed)
and 0.017 times that (red dashed). A Chabrier IMF yields approx 0.017
SNe per solar mass, so the red dashed line is approximately the cumulative
number of SNe. Blue solid line is the actual cumulative number of SNe that
provided feedback in the code. Orange is the net cumulative number of SNe
detected by the gas particles in the feedback routine. This is computed from
the change in thermal energy of the gas particles. The blue and orange lines
have been shifted upward by factors 1.1, and 1.2, for clarity: otherwise they
both fall on top of the red dashed line. This demonstrates that the SN rate
is consistent with the amount of stars formed, as well as that the gas receives
the energy released.

40

Figure 3.8: Top: ratio received/injected SN energy,for kinetic feedback. Bot-
tom: cumulative number of injected SNe (black) versus energy received (red).
Received energy is computed from the difference in total kinetic + thermal
energy of the gas, between the end end the beginning of the feedback.

41

Numerical implementation and units

As usual we will use a hat to indicate a programme value.

M =UM M̂ (3.194)

v=UV a
−1 v̂ (3.195)

cs = a−3(γ−1)/2Uv ĉs (3.196)

ρ= a−3UM U−3
L ρ̂ (3.197)

G=U3
L U

−1
M U−2

T Ĝ (3.198)

t=UT t̂ . (3.199)

Note that in Eagle, the units we use are set in the parameter file as

UM = 1010 h−1M� (3.200)

UL =h−1 Mpc = 3.085× 1024 h−1cm (3.201)

UV = km s−1 = 105 cm s−1 (3.202)

and the unit of time is thus a derived unit,

UT = UL U
−1
V = 3.085× 1019 h−1 s , (3.203)

which, just like the programme’s gravitational constant, Ĝ, is calculated in
routine begrun.c. See the section on units for where the expansion factor a
comes from, given our definition of co-moving variables. Note that v̂ is the
programme’s velocity (not the one in the output files), and the sound speed
ĉ2
s = γp̂ρ̂−1 = γŜρ̂γ−1, where S is the entropy.

Therefore we find that

Ṁacc =
UM
UT

α
4πĜ2 M̂2ρ̂ a3

(a−3(γ−1) ĉ2
s + a−2 v̂2)3/2

(3.204)

≡ UM
UT

˙̂
Macc . (3.205)

This accretion rate is limited by the Eddington accretion rate, which is

ṀEdd =
4πGMBHmpc

σTεrc2
(3.206)

=
U3
L U

−1
M U−1

T mp

σT c

UM
UT

4πĜ M̂BH

εr
. (3.207)

42

Note that the first factor is a dimensionless constant, for a given choice of
units.
Time variable. The following are gadget definitions:

HUBBLE≡ 100 kms−1 Mpc−1 (3.208)

Hubble≡HUBBLE UT (3.209)

E(z)≡ (Ωm(1 + z)3 + ΩΛ + (1− Ωm − ΩΛ)(1 + z)2)1/2 (3.210)

huble a≡Hubble× E(z) (3.211)

and therefore
H(z) = hU−1

T hubble a . (3.212)

The physical time step, related to a change d ln(a) = da/a, is then

∆t≈ a
ȧ

∆a

a
(3.213)

=
1

hU−1
T hubble a

d ln a (3.214)

∆t̂=
1

h hubble a
d ln a (3.215)

∆t=UT ∆t̂ . (3.216)

Note that from earlier, δt ≡ d ln(a) = 2bin×Timebase interval, hence we also
have

∆t =

[
UT

1

h hubble a

]
δt̂ , (3.217)

where the factor δt̂ ≡ d ln(a), and the factor in brackets is the variable
All.cf Time to cgs defined in eagle timestep.c. Finally, the blackhole mass
should be updated as

∆MBH =UM ∆M̂BH (3.218)

= ṀBH ∆t (3.219)

= (1− εr)Ṁacc∆t (3.220)

=
UM
UT

(1− εr) ˙̂
Macc

d ln(a)

hU−1
T hubble a

. (3.221)

svnversion 21680 In this version of the code, these equations are implemented

43

using the following variables:

meddington =
h−1UT
UM

ṀEdd (3.222)

mdot =
UT
UM

Ṁacc (3.223)

dt=hU−1
T ∆t . (3.224)

The accretion rate mdot is ‘limited’ by the Eddington rate, as

mdot ≤ BlackHoleEddingtonFactor×meddington , (3.225)

or Ṁacc ≤ BlackHoleEddingtonFactorh−1 ṀEdd. Note there is a stray Hubble
parameter h here.

The mass of the black hole is updated as

∆M̂BH = (1− εr) mdot dt (3.226)

=hU−1
M ((1− εr) Ṁacc ∆t) , (3.227)

which also has a stray h in it.
versions after 21680 The variables are now changed to

mdot edd over mBH =
4πGmp UT
εr c σT

(3.228)

meddington = mdot edd over mBH M̂BH (3.229)

=
UT
UM

ṀEdd (3.230)

mdot =
UT
UM

Ṁacc (3.231)

dt=U−1
T ∆t . (3.232)

To limit the rate of accretion to the Eddington rate is now simply mdot ≤
meddington. The increase in black hole mass is (1−εr) mdot×dt. The energy
reservoir increases by

BH Energy+ = εBlackholeFeedbackFactor εr (mdot× dt) ĉ2 , (3.233)

where ĉ = c/UV is the speed of light in programme units. These BH variables
are therefore all stored in programme units.

44

Feedback is implemented in routine eagle bhfeedback.c as follows. The
variable

∆u= BlackHoleMinHeatTemp

× temp to u cgs primordial (3.234)

critical energy per unit mass =
∆u

U2
V

≡ ∆û (3.235)

is the desired increase of specific energy of a gas particle near a BH, with ∆u
in cgs units, and the programme variable critical energy per unit mass the
specific energy in programme units. The function temp to u cgs primordial
returns the conversion from temperature to the thermal energy, using the
mean molecular weight for primordial composition.

The code calculates the actual number of gas neighbours of a BH, as well
as the total mass of those neighbours, without kernel weighing, as (need to
determine how h is set)

num ngb=
∑
j

(3.236)

ngb mass=
∑
j

mj (3.237)

〈m〉≡ ngb mass
num ngb

. (3.238)

The quantity 〈m〉 is the mean mass of a neighbouring gas particle – we
have seen that gas particle masses may vary over orders of magnitude when
stellar mass loss is included.

The BH builds-up an energy reservoir for feedback, (BH Energy in Eq.??),
and will only heat particles when it has sufficient energy to heat Black-
HoleNumberOfneighboursToHeat (an input parameter) gas neighbours.Therefore
feedback will only take place when

BH Energy≥ critical energy

= BlackHoleNumberOfneighboursToHeat

×∆û × 〈m〉 . (3.239)

If this inequality is not satisfied, the BH does not perform heating, and its
energy reservoir (BH Energy) may increase over time.

45

If the BH does have sufficient energy in its reservoir, BH Energy ≥
critical energy, we calculate the heating probability p per gas neighbour from

n heat=
BH Energy

∆û × 〈m〉
(3.240)

p=
n heat

num ngb
. (3.241)

If the BH heats few particles, p < 1 is the probability of heating a particle.
However if the BH has a lot of energy, p can be larger than one. In that case,
we put p = 1, and heat every particle to the higher specific energy

∆û =
BH Energy

ngb mass
. (3.242)

After a heating event, we zero the energy reservoir, BH Energy.
Important: I changed the order of feedback and accretion. Up to version
svnversion 21680, we first perform feedback, and then accretion. This has the
unwanted effect that a heated particle may next be swallowed – cancelling
out any feedback. The later versions first perform merging and accretion,
and then perform feedback.

3.6 Time stepping

3.6.1 Tim-stepping: original scheme

Active particles: kick-drift-kick scheme

Assume velocity (v), position (x) and entropy (S) and predicted entropy (Sp)
are known at time t. A time-step starts by computing a new current time-
step ∆t (see later for actual variables used), then steps the solution thorough
the following routines

1. calculate new time-step ∆t.

2. kick: kick active particles over 1/2 a time step: do first halfstep kick

vn+1/2 = vn + an−1/2 ∆t

2
(3.243)

Sn+1/2 =Sn + Ṡn
∆t

2
. (3.244)

46

Figure 3.9: Different choices for selecting how to update entropy in the
presence of radiative cooling and feedback. Black shows a case where
the cooling rate is calculated comparing Sn+1

NR , the entropy calculated as

Sn+1
NR = Sn+1/2 + dS

dt

n+1/2

NR
∆t
2

, with Sn+1
cool , after an implicit cooling step, giving

a cooling rate dS
dt

n+1

Cool
= (Sn+1

cool − S
n+1
NR)/(∆t/2). After feedback, the entropy

is much higher and the cooling rate should be much smaller. This is illus-
trated comparing blue dashed line (with the high cooling rate) against the
green line, which uses the much smaller cooling rate computed at the higher
entropy following feedback. The entropy after the next kick will now in fact
increase (because of the low cooling rate) whereas in the old case it would
decrease.

47

The entropy rate Ṡn = Ṡ
n−1/2
NR +Ṡncool combines the non-radiative rate of

entropy change from time tn−1/2 with the rate due to cooling, evaluated
at time tn.

3. drift: drift all particles to current time t: find next sync point and drift

∆tf = t− T current
i (3.245)

x(t) =x+ v∆tf (3.246)

vp(t) = vp + a∆tf (3.247)

Sp(t) =Sp + Ṡ∆tf (3.248)

T current
i = t . (3.249)

Note that T current
i is simply the last time that the particle was drifted.

Since ∆tf is calculated as the difference between the current time and
the last time that the particle was drifted, we can simply add vn+1/2 ∆tf
and Ṡn+1/2 ∆tf to get incremental updates to position, ‘predicted’ ve-
locity vp, and ‘predicted’ entropy Sp. The ‘accelerations’ v, a and Ṡ
correspond to the last velocity, accelerations, and entropy derivative
computed.

4. calculate new accelerations: compute accelerations, an+1/2 as well as
the non-radiative rate of change of entropy, Ṡ

n+1/2
NR . In hydra.c, accel-

erations are calculated using predicted values for velocity vp(t), and
entropy Sp(t), as well as the current ‘drifted’ particle positions x(t).
Note that the entropy here is a predicted value, and is store in a dif-
ferent variable than the entropy S used in the previous kick.

5. kick: kick active particles over second half of time step: do second halfstep kick

vn+1 = vn+1/2 + an+1/2 ∆t

2
(3.250)

Ŝn+1 =Sn+1/2 + Ṡ
n+1/2
NR

∆t

2
. (3.251)

Note in particular that this uses the non-radiative rate of change of
entropy (i.e. ignores radiative heating/cooling in the entropy).

48

6. cooling: eagle docooling. Calculate the cooling rate from

Snew = do cooling(Ŝn+1,
∆t

2
) (3.252)

Snew≥Smin (3.253)

Ṡn+1
R =

Snew − Ŝn+1

∆t/2
(3.254)

Ṡn+1 =
Snew − Sn+1/2

∆t/2
= Ṡn+1

R + Ṡ
n+1/2
NR (3.255)

Sn+1 =Snew (3.256)

Sn+1
p =Sn+1 . (3.257)

This is I believe what we should do. However currently the time interval
used in Eqs (??) and (??) is obtained from eagle get SPHparticle elapsed time,
and (when the limiter is not used), equals ∆t (and not ∆t/2 as it should
be). The rate of change of entropy, in Eq.(??) currently in the code is
Ṡn+1 = Ṡn+1

R , is only the radiave rate (which is why I claim we miss 1/2 a
step of shock heating in the first kick).

Incidentally this illustrates why I claim our testing is not very rigorous:
a Sod shock tube test would not show that we do not update the entropy
correctly, because we would run it without cooling (as opposed to running it
with zero cooling rate).

Passive particles

Passive particles need a predicted value of the entropy, Sp (for example used
in get pressure). Whereas active particles follow the kick-drift-kick scheme
above, passive particles only get drifted. Since ∆tf is calculated as the differ-
ence between the current time and the last time that the particle was drifted,
we can simply add vn+1/2 ∆tf and Ṡn+1/2 ∆tf to get incremental updates to
position, velocity, and entropy.

3.6.2 Time-stepping: suggested scheme

A proper leap-frog scheme for entropy is not possible since Ṡ is a function
of S. For the non-radiative change (as computed in hydro force), S is in
fact not used: what is used is the pressure, which in routine get pressure is
calculated from the predicted entropy, Sp.

49

Also, since the radiatice change in entropy is calculated using sub-cycling,
associating a radiative rate of change of entropy from ∆S/∆t may give erro-
neous results. The scheme below is designed to be robust.

3.6.3 Cooling tests

The following tests do not use the timestep limiter.

Test 1: Interpolation of cooling tables

This test (EAGLE TEST COOL=1) simply compares the cooling rate (for a
given density and redshift) for each element, as function of temperature, as
interpolated by the code, against what is in the cooling tables. Code works
well.

Test 3: cooling of box at uniform density and temperature

The uniform denity box is initiallize with a given density and temperature
and then left to cool. The cooling rate is indendent of temperature, and in
this case the anlytical solution is simply that T decreases linearly in time.
In the code, cooling is switched off below T = 104 K. As seen from Fig. ??,
the temperature evolution computed using EAGLE follows the analytical
solution very well. Run this test setting EAGLE TEST COOL=3. This
tests the implementation of routine that evolves the thermal energy, for a
case whether there are no adiabatic chnages, nor non-adabatic changes that
are due to shocks.

Test 4: cooling through a Sod shock

This non-cosmological set-up is a shock tube, and is run with EAGLE TEST COOL=4.
The CoolingTest/SodCool directory contains a python script (analytic.py)
that calculates the similarity soloution discussed below, and an idl script to
compare the simulation to that solution, as well as the Config.sh and initial
conditions files. See Creasy+ ’11 for details.

Initially, gas in a long tube is of uniform density and temperature. The
gas is given a velocity, so that gas at x < 0 has vx > 0 and gas at x > 0
has vx < 0: this generates a strong shock at x = 0 which propagates out.
Figure ?? compares the analytic solution to the EAGLE solution when the

50

Figure 3.10: Comparison of cooling rate at z = 2. for gas at a given density,
between values calculated by the code (dashed lines) and rates directly from
the cooling table.

51

Figure 3.11: Non-cosmological cooling of gas at uniform density and tem-
perature, with a rate which is independent of T . The analyticl solution (gas
cools linearly in time) and the EAGLE solution track each other well. In
the code, gas stops cooling below T = 104 K.

52

gas does not cool (γ = 5/3). Apart from a wall heating effect at x = 0, the
code reproduces the similarity solution well.

Figure ?? is the case with cooling included. Again EAGLE seems to do
OK. This tests the combination of non-adiabatic (shock) and strong entropy
changes of the code.

Test 5: evolution of temperature at the mean density in cosmolog-
ical volume

Test of the evolution T (z) at the mean density are shown in Fig. ??. In a
test where cooling a reionization heating is applied to a gas element at the
mean density (black curve), the resulting T (z) does as expected, and is close
to the data points of Schaye+00. Blue line is u(z) scaled to match T (z) at
the maximum value: the blue line then follows the black line expect at high
z > 6 where the Universe is not yet very highly ionised (and hence the mean
molecular weight is still changing). Red line is the (scale) cumulative injected
thermal energy (due to H and He reionization). These curves look fine.

However the red solid circles correspond to a simulation with low σ8, and
corresponds to the median temperature: clearly there is an issue here: those
points should lie on the black line.

3.7 Comparison to previous code

Appendix:

Variables, their meaning, units, and scaling

This note describes the units and meaning of variables in the EAGLE version
of GADGET, both for internal code units, and those that are written to the
snapshot files, when a cosmological simulation is performed (i.e., when the
code uses comoving variables).

The Hubble constant is written as H0(z = 0) = 100h km s−1, and a ≡
1/(z + 1) denotes the expansion factor, with z the redshift. The subsection
name refers to the group name in the hdf5 file

We will denote code variables by a hat, so x is the physical comoving
position (which has dimensions), whereas x̂ is the corresponding code position

53

Figure 3.12: Non-cooling Sod shock: uniform density and temperature gas
from the left shocks when it runs into the gas that comes from the right.
Apart from wall-heating at x = 0, EAGLE gets the solution (red line) right.
The black data points are median SPH values in bins.

54

Figure 3.13: Same as Fig.?? but including cooling, the blue line is the simi-
larity solution.

55

Figure 3.14: Evolution of T at the mean density. Red curve is proportional to
the internal energy injected due to hydrogen and helium reionization. Black
(blue) curve is evolution of T (z) (u(z)), using a test routine that calls Ea-
gleCoolingRate to evolve the thermal state of a parcel of gas at the mean
density. Black points with error bars are those of Schaye+00. Red points are
the T (z) of a simulation with very low σ8: this tests the cosmological update
of the cooling rates: the code clearly passes this test.

56

Figure 3.15: Madau plot for runs without feedback (solid) and runs with
constant wind speed kinetic feedback (vw = 647 km s−1, Ṁw/Ṁ? = 4.17)
(dotted) between original code (red) and new implementation (black). Box
is 3.125 h−1 Mpc, 643 particles.

57

Table 3.1: Translation between input parameters and physical parameters
for star formation

process symbol name input variable default

Star formation law AKS SF SchmidtLawCoeff MSUNpYRpKPC 1.5151× 10−4M� yr−1 kpc−2

nKS SF SchmidtLawExponent 1.4
ρ?,KS SF SchmidtLawHighDensThresh HpCM 103 hydrogen cm−3

n′KS SF SchmidtLawHighDensExponent 2
Cool-eos ρeos EOS Cool MinPhysDens HpCM3 hydrogen particles 0.1 cm−3

∆eos EOS Cool MinOverDens 10
γeos EOS Cool GammaEffective 1
Teos EOS Cool TempNorm K 8000K

Jeans-eos ρeos EOS Jeans MinPhysDens HpCM hydrogen particles 10 cm−3

∆eos EOS Jeans MinOverDens 10
γeos EOS Jeans GammaEffective 4/3
Teos EOS Jeans TempNorm K 8000K

(which is dimensionless). Note that the variable in the output file, xout, can
be different from either x or x̂.

Definitions

The relation between physical and comoving variables is defined using a as

r ≡ ax . (3.258)

where r is the physical position, and x the comoving one. This is used to
define the peculiar velocity, vp, and peculiar acceleration, ap, as

vp≡ a
dx

dt

ap≡
1

a

d

dt
(a vp) . (3.259)

Let p and ρ be the physical pressure, and density, respectively. The
Eulerian equations of motion are

58

ẍ + 2Hẋ + (ẋ · ∇)ẋ =− 1

a3
∇Ψ− 1

a2

∇p
ρ

∇2Ψ = 4πGρg,0δ , (3.260)

where ∇ is d/dx, δ is the overdensity, ρg,0 is the mean physical density at
a = 1, and H = ȧ/a. We will assume a polytropic equation of state, p = ε ργ,
where ε is the entropy.

Units

The Units group defines the conversion from GADGET dimensionless vari-
ables into cgs units. These are read from the parameter file and copied into
the hdf5 file. At present these are

1. Lenght: UL = UnitLength in cm

2. Mass: UM = UnitMass in g

3. Velocity: UV = UnitVelocity in cm per s

4. Energy: UL ≡ UM U2
V .

For later use, the derived density unit Uρ ≡ UM U−3
L pressure unit Up =

UD U
2
V , entropy unit, ε = p/ργ, Uε = Up U

−γ
ρ , and time unit, Ut = UL U

−1
V .

Constants

The units of these mathematical and physical constants are cgs. Solar abun-
dance Zsolar is the assumed solar metallicity as a mass fraction.

Header

1. Time: expansion factor a (dimensionless), with a = 1 today.

2. Redshift = z = 1/a− 1

3. HubbleParam = h

4. NumPartTotal: 5 integers: total number of particle of each species.

59

Time, and Hubble constant

The parameter file defines h, the dimensionless Hubble constant. Several
places in the code compute

H = 100 km s−1 Mpc−1 Ut
(
Ωm a

−3 + ΩΛ + (1− Ωm − ΩΛ) a−2
)1/2

, (3.261)

so that H(t) = hHU−1
t = ȧ/a is the Hubble constant. This can be used to

compute the timestep,

∆t

h−1 Ut
=

∆a

a

1

H(a)
= ∆t̂ . (3.262)

Note that GADGET uses the expansion factor a as time variable, but in
these notes I will always use t to denote time, never expansion factor.

Particle variables

N is the number of particles. There are five particle species, PartType0 is
gas, PartType4 are stars, the others are dark matter. The number of particles
of each species can be determined from the Header variable NumPartTotal.

3.8 Gadget equations

1. The name of the snapshot variable that contains the particle mass is
Masses(1:N):

m= Massesh−1 UM [g]

= m̂ h−1 UM [g] . (3.263)

2. The name of the snapshot variable that contains the particle position
is Coordinates(3,N):

r≡ ax
= Coordinates× h−1 aUL [cm]

= x̂ × h−1 aUL [cm] (3.264)

60

3. The name of the snapshot variable that contains the particle velocities
is Velocities(3,N):

vp≡ aẋ
= Velocities× a1/2 UV [cm/s] . (3.265)

The internal velocity v̂ = a2 h−1 dx̂
dt̂

4. The name of the snapshot variable that contains the particle accelera-
tions is Acceleration(3,N):

ap≡
1

a

d

dt
avp

= aẍ + 2H(a)aẋ

= AccelerationhU2
V U

−1
L [cm/s2] . (3.266)

The internal acceleration â differs for hydro and gravity. For gravity:

âgrav =
∑

Ĝ
m̂x̂

x̂3

= a
dv̂

dt̂
. (3.267)

whereas for hydro

âhydro =
1

ρ̂

dp̂

dx̂

= a3(γ−1) dv̂

dt̂
. (3.268)

5. The name of the snapshot variable that contains the particle density is
Density:

ρ= Density h2 a−3 UM U−3
L [g cm−3]

= ρ̂ a−3 h2 Uρ [gcm−3] . (3.269)

6. GADGET does not output the entropy nor the pressure, but it is
useful to know what the internal values are.

61

p= p̂ a−3γ h2 Up [g (cm s−1)2 cm−3]

ε= ε̂ h2−2γ Up U
−γ
ρ [g (cm s−1)2 cm−3(g cm−3)−γ] . (3.270)

7. The name of the variable that contains the particle internal energy per
unit mass, u, is InternalEnergy.

u= InternalEnergyU2
V [(cm/s)2]

= û U2
V [(cm/s)2] . (3.271)

The internal energy u is usually computed from the entropy, u =
ε ργ−1/(γ − 1), hence during a runs one needs to first convert the co-
moving density to a physical value, ρ ∝ ρ̂ a−3 which then introduces a
factor a−3(γ−1) since the entropy ε is a independent.

The temperature is computed from u = kBoltzT/(γ − 1)µmH , where
kBoltz is Boltzmann’s constant, µ the mean molecular weight per parti-
cle, and mH is 1/12 of the mass of a 12C Carbon nucleus.

8. The name of the variable that contains the particle potential is Poten-
tial(1:N):

Φ≡
∑ GM

r
= Potential a−1 U2

V [(cm/s)2] . (3.272)

9. OnEquationOfState.

Has to do with being on the effective equation of state (EoS), namely

= 0 when particle has never been on EoS

= 1 when particle is currently on EoS

=−awhen particle not currently on EoS, but left EoS when expansion factor was a.

62

10. IronFronSNIa Mass fraction of Iron (Iron mass over particle mass),
produced solely by super novae of type I.

11. StarFormationRate. The star formation rate (if a gas particle), or the
star formation rate of the gas particle when the star formed, for a star
particle.

12. TimeMaximumEntropy, TimeMaximumTemperature. Expansion fac-
tor when particle had its maximum entropy, and maximum tempera-
ture, respectively. (Note that temperature and entropy do not scale
with a.

13. WindFlag.

= 0 if particle has never been in a wind

=−awhen particle was last in the wind at expansion factor a(3.273)

14. MaximumEntropy(1:N):

Maximum value of the entropy ε̂. Physical entropy

εmax = MaximumEntropy h2−2γ Uε [g (cms−1)2cm−3 (g cm−3)−γ] .
(3.274)

Star formation implementation

Write the ags surface density, ΣH , in terms of the hydrogen column density,
NH , and hydrogen mass fraction XH , as

Σgas = NH
mH

XH

=
(pγf
G

)1/2
, (3.275)

where p is the effective pressure.
The Schmidt law is written as

ΣSFR

M� kpc−2 yr−1
= C

(Σgas

M� pc−2

)n
(3.276)

Combining the last two equations gives

63

ΣSFR

M� kpc−2 yr−1
= C

(pγf

G(M� pc−2)2

)n/2
. (3.277)

If you also assume that

ΣSFR

Σgas

=
ρ̇?
ρgas

, (3.278)

then

ρ̇? = C ρgas
ΣSFR

Σgas

= C ρgas

Myr

(Σgas

M�pc−2

)n−1

= C ρgas

Myr

(pγf

G(M�pc−2)2

)(n−1)/2
. (3.279)

In terms of numerical implementation this becomes

dm?

dt
= C mgas

Myr

(pγf

G(M�pc−2)2

)(n−1)/2
(3.280)

or in terms of programme variables

dm̂?

dt̂
= C m̂gas

h−1Ut
106yr/s

(p̂ a−3γ h2γf

GRAVITY
(
(pc/cm)2

M�/g
)2
)(n−1)/2

. (3.281)

where the quantity in () is dimensionless, and GRAVITY = 6.67 × 10−8 is
Newton’s constant in cgs units.

64

