The EAGLE code



Chapter 1
TO do’s

e re-make plots of EOS

e compare kinetic feedback rob versus me
e change name of eos flag in sfr

e change temperature limit for sfr

e insert stellar evolution

e insert vel disp calculation

e add temperature floor to eagle_sfr, below which stars are allowed to
form (in case they are not on the eos yet)

e add new parameter: minimum reheating temperature for type II SNe

e add new parameter: miminum re-heating temperature for type I SNe
and implement type I SNe re-heating in similar way as type II. For that
you need to compute the ngb_mass weight, also in eagle_enrich

e star’s smoothing lengths are not read from a snapshot file -; change
this



Chapter 2

Issue’s

e routine eagle_timestep.c: why is entropy derivative zeroed if predictyed
entropy j floor? Should it not be that entropy derivative cannot be
negative?

e routine eagle stellar_evolution, line 232: number of SNe is calculated
by multiplying specific number by (initial) mass of star — there seems
to be a 1/h missing, since gadget masses are in h~' mass units (cfr
similar calculation in routine eagle stellar_feedback, line 172.



Chapter 3
The sub-grid model in EAGLE

3.1 Hydro and gravity

This section explains the equations that are being integrated, with a focus

on definitions of variables and their dependence on a (the expansion factor).
The equations we need to solve, those of a self-gravitating fluid, are the

continuity, Euler, energy and Poisson equations. They are respectively

dp
- = q
5 +V(pv)=0 (3.1)
0 1
pTad +(v-V)v= —;Vp - Vo (3.2)
p%u +p(v-V)u=—-pVv (3.3)
V20 =47Gp. (3.4)

Here, u is the energy per unit mass, u = p/(v — 1)p = kgT /(v — 1) pmy,.

To take into account the expansion of the Universe, we will write the
physical variables r (the position) and v (velocity) as perturbations on top
of a homogeneous expansion, by introducing the co-moving position x and
the peculiar velocity v, as

r=a(t)x

V=r=aX+axXx=ax+v,. (3.5)



Here, a(t) is the scale factor of the expanding (background) cosmological
model. The velocity v is the sum of the Hubble velocity, ax = Hr, where
H = a/a is Hubble’s constant, and a ‘peculiar’ velocity, v, = ax. In what
follows we will write co-moving variables with a hat to distinguish them from
physical variables. So # = a~'r = z, and also V= 0/0xr = aV.

The Euler equation written in terms of x and 7 is

1
ai + 2aat + dar = ——Vp — Vo, (3.6)
p

The @ x term drops-out by changing the potential from ® to W, defined as

2 1
(I>:\P+§prr2—6/\r2 (3.7)
V20 =47Gpy 1265, (3.8)

where ¢ is now the over density, and p, the mean density.
In Gadget II (and Gadget III), position and velocity! are

Pos=x (3.9)
o dx

Vel =a"— 3.10
e adt ( )

The Gadget expressions for the equation of motion are then

dPos 1
dVel Gm Vp

where 7 is still the physical position, and V = Or.

Time variables
Gadget uses the expansion factor a as time variable, dlog a as the time step,
and uses integer stepping to get accurate times. The variables involved are

I'Note this is true inside the code, see below for the definitions of variables stored in
snapshots.



log TimeMax/TimeBegin

Timebase_interval = TIMEBASE (3.13)
thinglength
Oty — smoothingleng (3.14)
c
dt_step = dtppys ¥ ¢ dloga (3.15)
a
dl
ti_step = ek (3.16)

Timebase_interval -

Here, TIMEBASE devides the logarithm of the ratio of apegin = TimeBegin
OVer amax = limeMax, i.e. the value of the expansion factor at the end of
the simulation over its value at the start, in TIMEBASE equal steps, where
TIMEBASE is a power of two. dt,n is an example of a physical time step
(here the Courant step), this is multiplied by a/da (the Hubble constant), to
obtain dt_step=dlog(a), the log of the change in expansion factor. Finally,
ti_step is the integer time step that then corresponds to this physical time
step. The value of ti_step is decreased until it is a power of two. The timestep
bin associated with this step is also recorded, ie 2P"=ti_step.
Some useful conversions are then:
get time step from bin:

dlog a=2"" x Timebase interval (3.17)
dl
dt = 2g ¢ (3.18)

get time step from a difference between two gadget time, All.Time and
dt = dloga
Some often used definitions

hubble= ¢ (3.19)

a

Update of positions
In the PREDICT routine, the Pos variables are updated as
da

a3 h(a)

dt @2
A Pos= Vel — = Vel / = Vel dtqyis (3.21)
a

al

2 da
dlavigg = / o h(a) (3.22)
al



The time-step dtqng is interpolated from a pre-computed table in routine
DRIFTFAC.C.

Gravity.
The gravitational forces returned by the PM and tree-code are
Gm
Accg =) St (3.23)

The update of velocities when kicked, in terms of the gravity acceleration
Accy, are thus

1 2 da
AVel = o Accy dt = Accy / oy Accy dtgray xick (3.24)

al

“ da
dtgrav,kickE / % (325>

The time-step dtgray kick 1S interpolated from a pre-computed table in routine
DRIFTFAC.C.

Hydro
The co-moving density, pressure, thermal energy, and entropy are related
to their physical values through

p=a’p (3.26)
p=a"p (3.27)
t=a*0"Vy (3.28)
S=8 (3.29)
e=a0"V2 ¢ (3.30)

where ¢ = yp/p is the sound speed. Note that these definitions are some-
what arbitrary and other codes use other definitions. In particular these
definitions have the disadvantage that the velocity variable Vel, and the co-
moving sound-speed ¢, have different dependencies on the expansion factor
a, hence for example the sum of velocity and sound-speed (as may appear in
the calculation of a signal velocity) should be performed as

1 1
ai +c= = Vel +a 2072 ¢ = = [Vel + o' 207 D/2¢] (3.31)
a a
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~

Note further that p = (y—1) pu = S p7, therefore the equation of state does
not change, and in particular ¢ = yp/p.
Changing to co-moving variables in this way, we find that

~

Vp 1 Vp

= D (3.32)
1 1 Vp

dvel _Mp_ 1 Vb (3.33)
dt p a3(7*1) P

The hydro-acceleration returned by routine hydra are

A~

Vp

ACCh = -0, (334)
p
and therefore the update of Vel due to hydro accelerations is
dt @2 1
AVel = ACChW = ACCh /a'1 W da
= ACCh dthydro,kick (335)
as 1

dtnydro kick = /a - ah(@)a@oD da . (3.36)

The time-step dthydro kick 15 interpolated from a pre-computed table in routine
DRIFTFAC.C.

The hydro accelerations as implemented in Gadget2 follow from
V== — - =Vp, (3.37)

and the usual SPH way of finding smoothed quantities, such as
p(i)=> m; W (3.38)
J

Aipi=y_miA; Wiy, (3.39)

J

in terms of the kernel W;; and the sum over neighbours j. Therefore

dv Vp Di P;

J
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where W; uses the smoothing length h; and vice versa for j. This is Eq. (7)
in the Gadget 2 paper (apart from the f; factors). The artificial viscosity
term used in Gadget 2 adds another term to the acceleration, which is

dv
%‘viscz_zmjnij VIV (3.41)
J
Ci — 3wy Wy
Hz’j:_% (ci+¢ ”wj)wj (3.42)
pl]
ij

These are equations (9) and (14) of the gadget 2 paper. I next describe
how these equations are implemented, following the naming convention of
Gadget 3, by introducing variables fac_mu, vdotr2, mu_ij

Note first that the kernel and its spatial derivative transform as

W=a*W (3.44)
VIW=a"VIV. (3.45)
For a spherically symmetric kernel, gradients are

1 oW
=r- — . 4
VW =r - (3.46)

Next note that the relative radial velocity

v-r = (at + az) - ax = a*c - v + a*hPos = vdotr2. (3.47)



The following gadget variables are then

facmu=a "' ¢*0~1/2
fac_mu vdotr2
Pos
_ S0’
r
— ¢30—1)/2 w;j

mu.ij =

v_sig = (¢ + ¢; — 3muij)
= a3(“”1)/2(ci + Cj — 311)”)

a vsig (—mu_ij)

VISC = 5 ﬁ
. CL3(7_1) (07 (Ci —+ Cj — 3wij)w,-j
a a’ 2 Pij
a3(771)
=11,
a
11
dwki=— - oW (q)
htq Oq
) pi  D;.dwk.ij
hfc=m;(visc + (15—12 - ﬁ—%) Pos
a® pl| 10W 1
a2 | p2| r Or Pos’

(3.56)
(3.57)

(3.58)

(3.59)

Note that in the last line dwk_i = a*r=*dW /dr. Finally the hydro accelera-

tion is

Accy, , = —hfc APos_x

— 020D {Hm’ i ﬁ} 19W APosx

p? r dr Pos
_ i VP APosx
p  Pos
B Vp APos_x
~ p  Pos

as should be.

10
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(3.61)

(3.62)

(3.63)



Entropy
Entropy, A = p/p?, changes due to the action of the artificial viscosity term
changes the entropy at a rate (Eq. 10 in the GADGET paper)

dA  1~v-1

dt 2 prt

The follows from energy conservation, where the change in thermal en-

ergy, u = ply—1)A/(y—1) is due to viscous work done, du/dt = —(dv/dt)yisc-

v. The factor 1/2 is due to the symmetrization of the velocity , v =v; — v;.
Note first that

Z mHijvij.VW . (364)

x OW
VW =0, ———+ - 3.65
M Ve ar + (3.65)
10W
=(v-.r)———. 3.66
(v.r)——- (3.66)
Therefore
dA  dA
—_—=— 3.67
dt  dt (3.67)
1 y—1 a@ 1 10W
=35 56D My oy vise Vdotr2$;—af, (3.68)
11y—1 .
=—3 P Z hfc_visc vdotr2 . (3.69)
The rate of change of entropy is stored in the variable
1 y—1 1 .
dtEntropy = 25y o ; hfc_visc vdotr2 . (3.70)
1 dA
== — 3.71

where the multiplication by (1/(a*h)) ((y—1)/2)) (1/p7~") is performed out-
side the loop over j. Therefore A is updated as

. dA
AA=—dt 3.72

1 dA

=—-—d .
Pl (3.73)

= dtEntropy da (3.74)

a
= dtEntropy dt_step . (3.75)
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Note in particular that indeed dt_step = da/a as explained before.
Curl and divergence
The density routine calculates curls and gradients as follows. First note that

Vpv=Vp-v+pV. v (3.76)
1
V'V:;(VpV—Vp-V) (3.77)
1 1 oW
(V V)l:E Zm](v I') , W, (378)

where the last line is the corresponding SPH expression.
Note that in an expanding Universe, where the peculiar velocity v, = ax,

v-v=3g+av-xz3h+v-vp. (3.79)

Note that Pos - Vel = x - a®>x = r - v,, therefore the divergence of the
peculiar velocity in SPH is

A

1 110w
(V-v),= =) ; m; (Pos - Vel) — — —— (3.80)
I ..
== DivVel . (3.81)

The last line introduces the Gadget variable DivVel. I see no reason why the
term 3h is missing from the calculation of the divergence.

Update of smoothing lengths

The smoothing length and the density are obtained from solving the following

intrinsic equation

4 .
?ths = Nspum. (3.82)

If we have a guess hy of the smoothing length, which gives a current
particle weight Ny, and a density py, we can try to improve the guess by
starting from the equation for the SPH density,

p= S W), (3.83)

12



where ¢ =r / h. For this, the derivative
qg OW
- 3.84
o= | 81
- Z m; [ kernel. Wk + hkernel de} (3.85)

This quantity is calculated in the density loop, together with p and Ny (the
current particle weight). Let the desired smoothing length be h;, and the
corresponding density p;, then p; = po + (0p/0h) (h; — hg), and, since ap-
proximately p; hi/N; = po h3/No, we get

pohd = — N, h3 (3.86)
Ny 5 8
NO 8
_No 3AhR dp Ah
hy 1+ = — )
<Nl 1 honhA (39
where Ah = h; — hy, or, in terms of € = Ah/hy,
N; — N, 1
€= N 0 2 o 0s (390)
0 + 0 Oh
Ny — N; 1
h;=ho (1 — ) 3.91
- S) TE (3.9)

Note that the 73" is actually the number of dimensions. This way of updating
h is used in the density calculation, and it improves the rate of convergence
especially when close to the right answer. For some reason, it is not used in
the calculation of densities (or smoothing lengths) for stars or black holes.

3.1.1 Time steps

The time step for the particles is compute in physical units and then con-
verted to comoving dlog(a) values. This conversion is described at the be-
ginning of section 3.1. This subsection describes the time steps used by the

13



gas particles in physical units.

On top of the usual riterion for gravity acceleation and time steps, the
code uses the Courant condition. For each particle, the signal velocity vy
is computed in the density loop. The time step size is then given by the CFL
condition on the resolution element of size h;:

hz‘ a

y=1-

Usig,i a° 2

At; = 2CcrL (3.92)
The last factor contains the terms relating to the expansion rate of the
Universe.
In EAGLE, we use an additional limiter to avoid particles getting an ar-
bitralrily large smoothing length due to inaccurate prediction in time. The
prediction of the evolution of the smoothing length is done on the basis of the
divergence of the velocity field of the gas and can be quite noisy. To avoid
spurious values, we forbid particles to be inactive for a time over which their
smoothing length would grow by more than a given factor. This constraint
can be expressed in the form of a maximal timestep:

At; =3In(a) - (V-v),-

- (3.93)

a 2
« is the maximal change in h allowed and is called MaxSmoothingLength-
Change in the code. A value of 1.26 will imply that a particle cannot change
its volume by more than a factor of 2 ~ 1.26% over the course of one single
time step.

The smallest of those two time steps is then use as the time step of this
gas particle.

14



3.2 Anarchy

3.2.1 Hydrodynamics
Main equations

Given the discrete quantity x;, its smoothed, SPH value (namely its density)
at position r; is

N
Yi = Z%’sz (3.94)
j=1
where the sum is over N neighbours, and
is the SPH kernel. Therefore, one can define the volume associated to x; as
x.
Vi== 3.96
Yi ( )
For example the SPH density is
pspu =y m; Wi (3.97)
J
The generalised, SPH equation of motion is (Hopkins, 2012)
dv; il ~
g = 2 (ViV; +w,9:75) (3.98)

where 1); is the correction term for variable smoothing length

h; OV;|

Wi = h; 9V _ 2
’ npV; Oh;

=4 3.99
ooV, O, (3.99)

and np is the number of spatial dimensions; ‘7j = /7, is the particle volume,
which defines the number of neighbours, thus the smoothing length; V; =
;Y i

Substituting v, V; and V; with their definitions, equation ?? can be
written as

T T > wity | fi Vil + = £V, W (3.100)
j=1 Yi Y5

15



where

T ( hi Oy hi 057
=1-" 1 3.101
i Tj <”Dﬂi 3hi> { " nopyi 5’%‘] ( )

Assuming 7; = m; (the particle mass), we obtain §; = p; (the particle
density), and the particle volume is then

Vi =mi/p; (3.102)
We define the variable
1 P/
A= (3.103)
p
where A; is the particle entropy (or entropic function), so P = Ap”. Assum-

ing x; = miAi/7 and y; = Z;VZI mjAjl-/ﬂ’, we can define the volume

V= — G = SIS Al (3.104)
Zj:l mji Ay Wi i Ej:l mji A Wi

As one can immediately see,

(i) == p, = Sl AWy YW
pPAll) == pi = A T %miAuy -

(3 (2

, 1
i = (3109)

has the dimensions of a density. Moreover, y; defines the smoothed pressure
through the relation

P=y (3.106)

16



Rewriting equation 7?7 as

dv; al P, P;
My =~ > [—injViWij + —;ijjWij}
= Y; Y;

N 2,.2 m2z2
miz2 P P;
S T | —e 2 N W ity &
Z J {mgxg 2f]v J +—53 m2x2 1>
j=1 ivi Ji 33 Jj
N 2
T; i |m; P
:—Zmimj——] { ;—fuv Wi+
j=1 mlm] 7,' ( miY; /$1)
2
ms P
b g, m]
37? (myy;/x;)? ’ ’

With a simple substitution we obtain

N AP, ey

dv;
d‘; :_Zm

J=1

The terms f;; and fj; are given by equation ?7:

zj [ hi Oy, hi 0]
ij=1—-—= ~ 1 .
fj Z; (nDyi 8}%) [ * np¥; Oh;

B Ajl./V npp; Oh; npp; Oh;

1 Al/'Y _
=1———Cpilp;=1——7~fi
1/~ SPiSD, 1/
A A7
where 1
fi= WCP,iCD,i
and
h; OPY" hi Op;] "
= 7 fi d = 1 7 )
P npp; Oh; o o, [ * npp; W%}

17

f]iiji]}

-J
Al/’y —Qf'LJV VVU + Al/’y — fjlv VI/’L]

(3.107)

(3.108)

(3.109)

(3.110)

(3.111)

(3.112)

(3.113)

(3.114)

(3.115)

(3.116)



Substituting in equation 77,

AVV _ Al/v \ P
j j
(W - fz) 72 V Wi; + <A1/7 fi ﬁ—?vj Wi(3.117)

i J

N

dv;
i =2

which is the equation in the code.
Alternatively, one could define the volume by using the particle number
density

=S W (3.118)

This is equivalent to using z = 1 and y = n; = Z;\le Wi;, and the particle
volume is then

~ 1 1
V=cx—=— (3.119)
Zj:l Wiy i
Equation 7?7 remains unchanged, while the term f;; becomes
T; hi Oyi hi 0y -
=1-= 1 3.120
b=ty (nnyz 6h) { " g, ahz} (3120
1 h, 9P hi ong]"
—1-—— 1 [1 + n } (3.121)
mjAj 7\ npn; (9hl npn; 8hz
- 1 ! r A;/’y 3
=1- —mjA;M Cpilpi =1 - —A;/y fij (3.122)
where 1
fis = ——377Chilhs 3.123
J minl/,Y PiSD, ( )

It is trivial to show that, for equal mass particles,

Cpi = Cpi/mj  Cpi=Cp, (3.124)

Substituting in equation 7?7,

A Ly, A” 1) B
A1/»y flJ l VV’LJ+ Al/»y f'j 15_? JW{?’ 5)

? J

N

dv;
dvt == m

18



Implementation

Implementation details refer to svn version 24524.

EntropyVarPred

predict.c

The variable SphP[i]. EntropyPred is used as entropy variable. It is calculated
from the predicted entropy in predict.c as

SphP[i]. EntropyVarPred = A;M defined in Eq. 7?7, and calculated in predict.c 1=198.

(3.126)
density.c
The ‘weighted density’p; from Eq. (??) is calculated as
SphP[i].cky.WeightedDensity = p; (3.127)

= Z mj_wk * SphP[j]. Entropy VarPred
J

(1=2220) (3.128)
/ SphP[i].EntropyVarPred 1=1082, (3.129)

where mj_wk = P[j].Mass x W(r;;/h;) (1=2205), with the kernel evaluated in
kernel.h.

Cooling and equation of state
The internal energy u; is derived from the particle’s entropy A;(t + At) =
A;(t) + A; At and its anarchy density pa as

Ai(t+ At p 7t
ut) = At i_f”A , (3.130)

eagle_cooling.c 1=139. Cooling integrates

du

ar —Anet (W) pipn » (3.131)

PSPH

eagle_cooling.c 1=161, which leads to a new thermal energy unew. This
is converted back to a new entropy using Eq. (77?).

Note that we cool at ‘constant’ pa, whereas without pressure-entropy we
cool at constant pspy, but that nevertheless py would be different if we re-
computed the density.
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Above a given density threshold, gas is moved onto an imposed pressure-
density relation to avoid artificial fragmentation. The shape of the imposed
eos, and of the minimum entropy, is

P = DPeos (p/ Peos) """ (3.132)
Peos = (7 - 1) Peos (kB Teos/((’)/ - 1) ,UmH> (3133)
— £ — @ @ Y—"Yeos 3 134
PPy ( p ) (3:134)

The input parameters that describe this are

1. the minimum physical density, pnin=EOS_Jeans_MinPhysDens_ HpCM3
2. the minimum physical over density, A,im=EOS_Jeans_MinOverDens
3. the temperature at the start of the eos, Ty,;, =EOS_Jeans_TempNorm_K
4. the slope of the EOS,; 7.,s=EOS_Jeans_GammakEffective

There is a similar set of parameters to impose a minimum temperature.
These get written in a form such that

Yeos
P = Peos (L> y (3135)
The entropy is not allowed to be lower than

pSPH Yeos 1
Ai Z Peos ( ) ~ . (3136)
Peos Pspu

Having obtained the new entropy, we update A;.
Arguably we should use py here, since it is this density that determines
pressure forces and hence artificial fragmentation.

Star formation

The star formation rate is given by Eq. (??) and is zero if the particle is not
dense enough or too hot. The limits are calculate in eagle_sfr.c at 1=468
and 1=477 for density, and 1=480 for entropy:

PSPH = Pthreshold
A< A (3.137)
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The entropy floor is also calculated using pspy. Of the particle is deemed to
be star forming, its star formation rate is o (%)(”Ks_l)/ 2 where the pressure
p = A(t) p) is computed in predict.c 1=325.

Stellar feedback

Having calculated the change in specific energy of a particle due to feedback,
Aucgg, the particle’s properties are updated in anarchy_energy_injection.c.
The pre-feedback u is calculated from

At + At) p !
Uold = G ipA ; (3.138)
/y_

with the new thermal energy
Upew = Uold T Au. (3139)

Note that anarchy_energy_injection.c uses programme units, not cgs units.
Note that uqq uses the predicted entropy and the anarchy density. We then
iterate updating the new entropy and density according to

Y 1 Unew
An+1 = ( 7_)1
IOA,n
pn AN — mW (0)AY + mW (0)AY,
AnJrl

until the relative difference between p, 1 and p,,, and the same for A, is less
than 107%, or there are more than 10 iterations. Once this is converged,
we update A, pa, and the pressure, p « pj. (Note there is no entropy floor
check here, since presumably entropy increases.) Note that this is not correct,
in the sense that the change in thermal energy (in the whole box) is not mAu.

Black hole accretion and feedback
We start by calculating an ‘entropy’ at the location of a black hole by calcu-
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lating

pei.spn = BH.b1.ABH Density =Y m; W, (1=2207, 479)
J
Apn = BH.b2.dBH Entropy = Y _m; W;, A(t); (1=2539,480)
J

/ pBH,SPH (1:1302)
pa = BH.b11.dBH Weighted Density =Y m; W; A7 (1=2220,483)

J

/ A3 (1=1308).. (3.141)
The sound speed and density for use in the accretion rate are

¢, = soundspeed = (fy Apg pgﬁ}spH)l/z (1=199)

2
M~ PBH,SPH

g o (5210

m o<

It is the value of ¢, that is reported in the log file. Energy injection uses the
same routine as stellar thermal feedback.

3.2.2 Artificial viscosity
3.2.3 Entropy diffusion

3.2.4 Energy injection

3.2.5 Black hole growth and feedback
Implementation details refer to SVN version 24344

Gas properties at BH position

In the following, the subscript BH identifies local gas proper ties at the black
hole position.

In Anarchy, the conversion from entropy to internal energy needs the (en-
tropy) weighted density, p, defined in equation (?7). Therefore, to compute
the local sound speed, ¢s gn, the black hole structure must hold the weighted
density, ppn, and the local (average) entropy, Agy.
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The density is computed in density.c [1ine 2197] as done for gas parti-
cles, and stored in BPP(i) .b11.BH Weighted Density [lines 483, 1040,
1308].

The mass weighted entropy at BH position is also computed in density.c
[1ine 2197], and stored in BPP(i).b2.BH Entropy [lines 480, 1036,
1302].

In eagle blackhole.c, the sound speed is computed as follows. De-
pending on whether PE-SPH is used or not, the variable weighted density
holds either BPP(i) .b11.BH Weighted Density or BPP(i).bl.BH Density
[lines 183-188]. Note that the density is physical, and converted with
the proper a2 factor. Therefore, the black hole local sound speed is simply
[line 199]

soundspeed = sqrt(GAMMA % BPP(n).b2.BH Entropy *
pow(weighted rho, GAMMA MINUS1)), (3.142)

(see also [lines 357-365, 738-746]). This are all the changes needed for
black holes growth.

Black hole feedback

The only change in eagle bhfeedback.c regards the injection into gas par-
ticles of the black hole feedback energy. This is done by using the function
anarchy energy_injection(j, delta_u) [line 619], where j is the gas
particle index, and delta_u is the injected energy in physical, code units.
The description of the injection method is below.

Issues

When compiled with EAGLE DETACH BH DENSITY the code does not compute
the black hole weighted density in eagle_blackhole density.c. The calcu-
lation is indeed missing in eagle blackhole.c. However, this function is re-
dundant, as gas properties around the black holes are computed in density.c
regardless of the above compilation flag.

3.2.6 Feedback energy injection

Internal energy changes due to feedback are implemented by using the func-
tion anarchy energy_injection(i, delta_u) in anarchy/anarchy energy_ injection.c.
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The function takes the particle index i and the amount of internal energy
change delta u (Au) as arguments.

Energy injection proceeds iteratively by computing the new value of the
entropy, and adjusting the weighted density (which is a function of en-
tropy) to it. We know the current value of the particle internal energy,
u; = %Aiﬁfl, and we know its value, u, = u; + Au, after the feedback
event. We also know the initial weighted density, p; o, and entropy, A;o. The
iterateive method follows:

1. a guess of the new entropy is computed as A; ; = (7 — 1)u}p; o;

2. the weighted density is corrected according to the change to the particle
weight in the density estimate, m;A;:

1
ping = T pio ALy —mi(Aly — AT W0, hs) | (3.143)
,1

3. convergence is checked for both density and entropy, requiring that the
variation from the previous iteration is smaller than TOLERANCE.

4. if the above criterion is not verified and the number of iteration is
smaller than MAX_ITER, set p;o = p;1 and A; o = A;; and restart from

(1).

The values of TOLERANCE and MAX_ITER are 107 and 10, respectively.

Issues

The problem with the above method is that it does not take into account
variations of internal energy of nearby particles. This may results in wrong
estimates of the weighted densities. The best solution is to use the pressure-
energy formulation of SPH.

Let’s assume that Au > u;, and only particle ¢ receives energy. The self-
contribution term in the computation of the weighted density will dominate
the sum, and we can then approximate the particle weighted density to

N
_ 1 1
Pi = PRz g mjAjMWz‘j =~ m;Wi;. (3.144)
i j=1
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This is what happens applying the above iterative method. Moreover, when
several neighbours receive energy, the change of their entropy is not ac-
counted.

On the other hand, if n neighbours received the same large amount of
energy, to some order, the weighted density of particle ¢ should become

L1 1 1O 1/
= > midyl Wy N DA Wi ~ nmiWag. - (3.145)
i j=1 i k=1

Let’s now suppose that, at a give time, the entropy of particle ¢ is mod-
ified by using the iterative method. The particle has now density p;, as in
equation (??). The particle internal energy, just after energy injection, is
then 1

— =7—1
u; = mAlpi : (3.146)
The internal energy is conserved, but only with the particular combination of
density and entropy in which neighbours are assumed to keep their entropy
unchanged during the same time-step.

Let’s suppose the above assumption does not hold, and several to many
neighbours of particle ¢ changed their entropy during the same time-step.
If particle ¢ becomes active in the next time-step, its density is updated in
density.c. Its new density is p}, as in equation (??). This can be much
larger than p; , as several to many neighbours of particle ¢ have just been
affected by feedback (typical case in black hole feedback). Therefore, the
internal energy of particle 7 is

1
= —1Aipﬁ’1 > . (3.147)
fy E—

This may explain why black hole feedback is so efficient in pressure-entropy
runs.
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3.2.7 Effective equation of state
3.2.8 Star formation rate

3.2.9 Cooling
3.3 Cooling

In EAGLE , cooling and photo-heating rates are interpolated from tables.
At higher densities, particles are required to have a minimum entropy, which
depends on density. One is to impose a given p— p relation, p = py (p/po)7*>*,
or equation of state, mimicking ISM gas, and at even higher density there is
a limit to make sure the Jeans mass, M, keeps being resolved with the same
number of particles. Since M; o< T%?2 /rho'/?, this corresponds to Yees = 4/3.
The imposed eos has then 4 parameters specified in the parameter file:

® p.os, the physical density above which the eos is imposed
e A., a minimum over density above which the eos is imposed
e T, the temperature at the eos threshold

® 7e0s, the slope of the imposed p — p, relation

The shape of the eos, and of the minimum entropy, is thus

D = Peos (P/peos)’yeoS (3148)
Peos = (’7 - 1) Peos (kB Teos/(('V - 1) ,U«mH> (3.149)
p Po /PO~y —res
= = (—)7 Yeos (3.150)
PP

The eos is imposed at relatively high density, where the temperature is
so high the gas is mostly (collisionionally) ionised. Hence the code assumes
the mean molecular weight to be u = 0.59, which is hard-coded in terms of
a defined parameter MEANMOLIONIZED in allvars.h.

3.4 Star formation

See Schaye & Dalla Vecchia 08. Asumme a Kennicut-Schmidt law of the

form
c o 0, for ¥, < X, (3.151)
] Aks (1M§‘;’)072)"KS, for 3, > 3, '
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Figure 3.1: Temperature-density relation as z = 7.25, for a LO03/N063 run
with assumed abundance of 0.1 Z, gas. Green and yellow curves are the
equilibrium temperatures for metal free and solar abundances, respectively.
Imposed ‘cooling’ and ‘Jeans’” EOS are shown by blue and red lines, respec-
tively. Vertical lines denote the over density threshold (which is the same
for both), and an imposed eos runs from peos to high densities. In this case
you see the over-density limit, which does not allow the gas to be below
the horintal blue line, once it passes the vertical blue line, which sets in at

~ 1072 cm™3. At higher den81ty, = 107! ¢cm™3, the imposed ‘Jeans’
eos takes over. Note that tghe partlc%es do not follow the imposed lines ex-
actly, because the particle’s mean molecular weight is not exactly equal to
MEANMOLIONIZED .
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Figure 3.2: Same as Fig.??, but at z = 3.0. Note how gas at p ~ 1074 cm ™3

tracks just above the solar equilibrium curve.
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where Agg = (2.5+0.7) x 1074 M ©® yr~'kpc 2 and ngg = 1.4+ 0.15. In a
hydrostatic disc galaxy this requires a specific star formation rate of

m, 1 o\ P -
— = — = Agg (1 Mg pe?) s (=) (s =1)/2 3.152
— Ks ( opc7) ( G ) ) ( )
where numerically
k
te =1.67 x 10° yr ( p/ks )02, (3.153)

103ecm—3 K

for ngg = 1.4 and Axs = 2.5 x 1074 M ® yr—'kpc2. Above a threshold
density p, ks, the index of the power law steepens to niyg.

In EAGLE gas particles are only star forming, within limits on physical
density, over density and entropy. If the particle falls within these limits, its
‘eos’ flag = 1 and the particle is eligible for star formation. In practise

e p > p,: the physical density needs to be sufficiently high
e A > A,: the over density needs to be sufficiently high
o S < Sos 10ATaex: the gas needs to b sufficiently cold.

The physical threshold p, depends on metallicity as

A
* i * 9 m,k —az ‘1 4
pe > i { s (G5 (3.154)

Eq. (?7) is implemented in routine eagle_get_eos_flag: Z is the particle’s
metallicity. For Z = 0 we use a fixed threshold pg ., for Z > 0, the threshold
increases o< Z%*. At z = 0.1 x 0.02 (or ‘ten per cent solar), the threshold is

Prn -

3.5 Stellar feedback

3.5.1 Virial temperature calculation
T, from dark matter velocity dispersion

Routine eagle_stellar_feedback set_tvir_from_dm_velocity_dispersion calculated
the DM velocity dispersion of active stars, within a smoothing length. The
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Figure 3.3: Specific star formation rate, p,/p, as function of pressure of the
gas. Dashed line is the imposed KS-law, with thresholds for star formation
imposed: cyan triangle: over density threshold, red traingle: imposed eos
threshold, circles: thresholds for abundances of [1,0.5,1071,1072,1073,0] x
Z, respectively cyan, orange, blue, green, red, and black. Squares are results
from the simulation, with the same colours. Different metallicity points are
offset vertically for clarity. The ssfr computed in the simulation follows the
imposed KS-law and metallicity thresholds.

30



B TTTTTTTTT IIIIIIIIIIIIIIIIIII TTTTTTTTT TTTTTTTTT TTTTTTTTT
B i J
0.001
. 0.01 |
0.
= |:1:|‘5 i
6 = _
-
, I |
=
£ |
=4 .
o
= ¢ |
[y |- i
Re
2 | ]
D |||||||||||||||||||I|||||||IIIII|||||||||||||||||I|||||||||
—4 -3 -2 1 0 i 7

0940 £/ My [em™]

Figure 3.4: p—p relation along the imposed equation of state. Star formation
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Different metallicity points are offset vertically for clarity. Star formation fol-
lows the imposed EOS, as well as tge imposed metallicity dependent density
thresholds.
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the computed star formation rate for gas particles (blue).
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smoothing length itself is not stired, and calculated only once, as the radius

within which the number of (kernel-wegihted) neighbours is NNB_Mult times
All.DesNumNgb. NNB_Mult is defined in the file itself (eagle_stellar_feedback_set_tvir)
and All.DesNumNgb is an input parameter. It may make sense to decrease

the noisy estimate of the velocity dispersion by increasing the number of
weighted numbers above the default 48 by taking NNB_Mult=4, for exam-

ple. The routine calculates the standard deviviation of the DM velocities (in

code units), then converts this to a physical value, o,, and uses it to assign

a virial temperature as (see eagle_compute_tvir_from_veldisp)

,uionmproton 2
TVII‘ = T O'U > (3155)
where flion = 4/(8 — 5 % 0.248) is defined as the mean molecular weight
for ionised primordial gas with a He abundance of 0.248 by mass (defined
in allvars.h), mpoton = 1.6726 x 10724 is the proton mass in g (defined in
allvars.h), kg = 1.38066 x 10716 is Boltzmann’s constant in erg K=! (defined
in allvars.h).

T, from virial mass, Msy and Rog.

The virial mass, Mgy, is defined such that the mean density within the
corresponding virial radius, Rygg is 200 times the critical, density, p., hence

Moo 3H?

=200 p. = 200 3.156

(47/3) Ry P 87 G (3.156)
o GMQOO 1/3

Rogo = (W) : (3.157)

The leads to a definition of the virial temperature, by using the virial
theorem to demand that

2 M. = . 3.158
200 2 H Mproton R200 ( )

Combining these gives

T = P (10GH (2) Maoo)” (3.159)
B

where Mo is the halo mass in g, G = 6.672 x 1078 Newton’s gravitational
constant in g~ em?® s72 (defined in allvars.h), H(z)is the Hubble constant at
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redshift z, is calculated as H(z) =HUBBLE All.HubbleParam FE(z), where
HUBBLE = 3.2407789 x 10'® = 100 km Mpc™ " in s (defined in allvars.h),
E(2) = (Qn (14+2)%4+Q4 )2 is computed in set_cosmo_factors_for_current_time),
and h=All.HubbleParam is the Hubble parameter. For reference, H(z) and
E(z) are available as All.cf_ Hz and All.cf_Ez, set in that same routine.

Relation between o, and My

Combining the two expression for Ty; yields the following relation between
(3D) velocity standard deviation o, and halo mass Mago:

G M200
R200 ’

which is again the virial theorem: 2 x (1/2)Magg 0? = G M3,/ Raoo-

02 = (10 G H(z) Mayyo)*? = (3.160)

Virial temperature derived from the FOF mass

The code does not use My but instead uses Mpor. The friends-of-friends
mass and corresponding radius are such that the density at the edge of the
FOF halo is b= times the mean matter density p,,, where b ~ 0.2 is the
linking length. The mean matter density is

3H?
" 81

To estimate Mpor we need to assume a density profile. Assume this is
isothermal, p(r) = pror (Rror/R)?. Then

Pm = Qm pe = 1 (1+2)°. (3.161)

Mror = 47 pror Ryor » (3.162)

and since ppor = b3 p,, is the density at the FOF halo’s edge, we find
MFQF/(47T/3 R%‘OF) = 3pror = 3Ppm b=3.
In this case, we find

G Myor 1/3
— . Nl
Fevor ((3/2b3>ﬂmH§<1+z>3> (3.163)

We can now define a fudge parameter « such that

9 3 kT G Mror
= .
2,u Mproton RFOF

(3.164)
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Following the derivation as above then gives

- 3 ) ) 2/3
Ty = o 2P0 G Mror Q2 Hy (1 3/2 . 3.165
e (s e 02y 1+ (169

Comparing with Eq. (??7) shows that the redshift depedence is the same in
an EdS Universe (H(z) = v/Q,,, Hy (1 + 2)*? for the high-z approximation).

For backwards compatibility we can choose « such that the virial temper-
atures are the same, i.e. that the values of the virial temperature obtained
from Eq. (??) and Eq. (??7) are the same at a given redshift z.

In terms of H(z) = Hy E(z), this yields a value of « of

_ 10 B(2) - (3.166)
(3/2b3)1/2 Q%Q(l +2)3/2 '
=0.89, (3.167)

for b=10.2, Q,, =0272, Qy =1—-Q,, and z = 1.

3.5.2 Energy fraction

We want to make the fraction of SN energy that goes into feedback depend
on a property of the halo. The short-drop family of models uses a dependence
directly on halo mass, Mpror only, as follows

log Mror\”
M = — 3.168
€(Mror) ( log M. ( )
Emin < € < €max (3169)
where M, = 10" M, s = —26.463, €nin = 0.1 and €. = 1 are input

parameters, with the numerical values corresponding to short drop. Note
especially the ratio of logs, as opposed to the log of a ratio M/M,.. This
curve is shown in Fig.??, together with a ‘linear’ fit

M,
e =¢o + p log(—=2E) (3.170)
My
€ =0.8 (3.171)
log My = e)/* log M, = 11.0391 (3.172)
P = (€Emax — €min)/(10g Mipin — log Mpyax) = —0.9. (3.173)
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Here, €(log Minin max) = €max,min, annd the numerical values correspond to the
short drop model.

We want to write this fit in terms of 7}, instead of mass. Using Eq. (?77),
this leads us to define T} as

2/3
,uionmproton 3 1/2
Ty= GM, /' H 3.174
= lmttmen (S Gty 2y ) (3.174)
=1.1x 10°K, (3.175)
in which case
3 Tvir
(Tar) = €0 + L log (20 . (3.176)
2 To

Note that this relation is now redshift dependent, since T;, MF2(/)‘3F (14
z). The value of Tj is chosen such that the relations are the same at z = 0.
To make the relation redshift independent (i.e. get the result from Eq.??),
replace the pervious relation by

Tvir

It might be worth generalising the last redshift dependence to give us
more freedom in tuining the feedback, by introducing a new parameter § as

3
(Tons 2) = €0 + 72’ log( ). (3.177)

€(Tyir, 2) = €0 + — log( (3.178)

A value of # = 0 corresponds to feedback dependent on virial tempera-
ture, # = 1 corresponds to feedback depending in FOF mass.

3.5.3 Type II SNe
3.5.4 Type I SNe
3.5.5 AGB stars

As these stars transfer mass, they also transfer energy since the velocities v,
and v, of star and gas particle are not the same. We therefore want to add
momentum, kinetic energy, and potentially thermal energy, of the accreted
particles to the accreting particle. Let the initial mass, velocity, and specific
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Figure 3.6: Used super nova energy as function of Mpop for the short drop
parameters (black) compared to a linear fit (red). The slope of the linear fit
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(€max; 108 Miyin) and (€min, 10g Mnayx ), where for example log M, is the value
of Mwor below which € = €,,,«. The red fit has ¢ = 0.8 for the same value of
Mror as the short drop model.
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thermal energy of the gas particle be M, V, and U, and let m;, v; and u; be
the same for the amount of accreted material, for ¢ = 1--- N.
Therefore conservation of mass & momentum yields

My=M+> m (3.179)
MyVy=MV+) mv; (3.180)

When a particle is accreted with specific energy u;, we want to add m; u;
to the total thermal energy of the accretor. We can do this event by event,
and still be indepedent of order (and hence number of cores, for example),
by updating as follows

Uppy = ——+ DT 3.182
a= (3182)

then after all N events My = M + > m;, and My, Uy = MU + > m; u;, as
required.
To conserve energy, we want

1 2 1 2 1 2
S My Vi +AE =MV +;§mivi, (3.183)

where we should add the missing kinetic energy AF to the thermal energy
of the final gas particle. For example the addition of one particle increases
the thermal energy of the accreting particle by

———(V—-v1)?>0. (3.184)

Remember that in GADGET the velocity variable is a? dx/dt whereas
the peculiar velocity (which enters in the equations above) is adx/dt, so the
missing energy then contains a factor 1/a?.

We can also take into account the thermal energy of the accreted matter,
which then leads to

1 2 1 2 1 2
s My Vi +AE =S MV —i—;émivi—i-;miui. (3.185)
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Taking into account the dependence of the various quantities on the scale
factor a, and denoting programme values as u, say, then gives

1
kinetic energy = h™' Uy, U2 a? 5 Z m o2, (3.186)

and N )
a=°p)’~
thermal energy = h™' Uy, UZ Z m % .
In the code, we can update the momentum of the gas particle event by
event, but we use an array Energy[i] for each SPH particle to compute
the right hand side in in Eq. (?7). After having computed the new kinetic
energy, (1/2) My V%, we can now compute the change in energy AFE, and
hence compute the change in entropy.

(3.187)

3.5.6 Black holes implementation
Basic equations

The Eddington luminosity of a BH with mass Mgy is
47 G M, BHpC
ar

Liaq = (3.188)

where or is the Thomson cross section. The Bondi-Hoyle-Littleton accretion

rate in gas of density p and sound speed c¢s, moving at speed v with respect

to the BH, is
. 4G? M? p
where « is a dimensionless efficiency parameter.
The increase in mass of the BH, Mgy, and the radiative energy released,

L, are then related by
Mpg = (1 — €) Maec (3.190)
L=¢ M., (3.191)

where €, ~ 0.1 is the radiative efficiency.
The energy production L is limited by the Eddington luminosity, so that

L < Lgaq (3.192)
: M, ArG M,
My = 2ot ATC e, (3.193)
— € OTERC

39



1 h,\_‘: | 1 1 1 1 1 1 | 1 1 1 1 1 1
_ ‘ oo17Ms JZ 20T |
. ODATMY o
10" | SNeSenf - =
- \ aMNeREecwy .
C ' ]
- -H'H -
L 10% N ;
Lo - ~ ]
4 L ° g
5 [ i
E
a
z 19 :
107k -
- ]
i ]
0

Figure 3.7: Total (initial) stellar mass as function of redshift (black dashed)
and 0.017 times that (red dashed). A Chabrier IMF yields approx 0.017
SNe per solar mass, so the red dashed line is approximately the cumulative
number of SNe. Blue solid line is the actual cumulative number of SNe that
provided feedback in the code. Orange is the net cumulative number of SNe
detected by the gas particles in the feedback routine. This is computed from
the change in thermal energy of the gas particles. The blue and orange lines
have been shifted upward by factors 1.1, and 1.2, for clarity: otherwise they
both fall on top of the red dashed hn Th1s demonstrates that the SN rate
is consistent with the amount of stars Q)rmed as well as that the gas receives
the energy released.
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Numerical implementation and units

As usual we will use a hat to indicate a programme value.

M=Uy M (3.194)
v=Uya ' (3.195)
ce=a 207Dy, ¢, (3.196)
p=a Uy U*p (3.197)
G=U}U;; UG (3.198)
t=Urt. (3.199)

Note that in Eagle, the units we use are set in the parameter file as
Un =10 ™ M, (3.200)
Up=h""Mpc = 3.085 x 10** h~'em (3.201)
Uy =kms ' =10°cms™! (3.202)

and the unit of time is thus a derived unit,

Upr=U U, =3.085 x 10 h7's, (3.203)

which, just like the programme’s gravitational constant, G, is calculated in
routine begrun.c. See the section on units for where the expansion factor a
comes from, given our definition of co-moving variables. Note that v is the
programme’s velocity (not the one in the output files), and the sound speed
&2 = ~ypp~t =~5p71, where S is the entropy.

Therefore we find that

: Um 4nG2 M2%p a3
Maee = U_T a(a_g(—y—l) ég + a2 @2)3/2 (3204>
Ur 2
= U—MM . (3.205)
T

This accretion rate is limited by the Eddington accretion rate, which is

. 47TGMBHTTL Cc
Mgaa = T@p (3.206)
orC UT €p ’ ’
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Note that the first factor is a dimensionless constant, for a given choice of
units.
Time variable. The following are gadget definitions:

HUBBLE = 100 kms~* Mpc ™ (3.208)
Hubble = HUBBLE Uy (3.209)
E(2)=(Qn(1+ 2% +Qx + (1 = Q — Q)1+ 2)H)V2 (3.210)
huble_a = Hubble x E(z) ( )

and therefore

H(z) = hUz" hubble_a. (3.212)
The physical time step, related to a change dIn(a) = da/a, is then

A
At 220 (3.213)

a a
__ ! dlna (3.214)

h Uy hubble_a
- 1

At=———4dl 3.215
hhubblea (3.215)
At =Ur At. (3.216)

Note that from earlier, 6t = dIn(a) = 2"™ x Timebase_interval, hence we also
have |
At = |Up ———1| 6t 3.217
{ g hhubblea} ’ (3:217)
where the factor 6 = dln(a), and the factor in brackets is the variable
All.cf_Time_to_cgs defined in eagle_timestep.c. Finally, the blackhole mass
should be updated as

AMgy = Uy AMgy (3.218)
= Mgy At (3.219)
= (1 — €)My At (3.220)
X |
_ D) dpe—t nla) (3.221)
Ur h Uz hubble_a

svnversion 21680 In this version of the code, these equations are implemented
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using the following variables:

-1 .
meddington = h_Ur Mgaq (3.222)
M
mdot = Ur Myee (3.223)
M
dt=hU;" At. (3.224)

The accretion rate mdot is ‘limited’ by the Eddington rate, as
mdot < BlackHoleEddingtonFactor x meddington , (3.225)

or Macc < BlackHoleEddingtonFactor h~* MEdd. Note there is a stray Hubble
parameter h here.
The mass of the black hole is updated as

AMgy = (1 — €,) mdot dt (3.226)
=hU (1 =€) Myee At), (3.227)

which also has a stray h in it.
versions after 21680 The variables are now changed to

47erp UT

mdot_edd_over mBH = (3.228)
€-COT
meddington = mdot_edd_over mBH Mgy (3.229)
Uy .
= Mgaa (3.230)
Um
Ur .
mdot = —— Moe, (3.231)
Um
dt=Uz" At. (3.232)

To limit the rate of accretion to the Eddington rate is now simply mdot <
meddington. The increase in black hole mass is (1—¢,) mdot x dt. The energy
reservoir increases by

BH—Energy+ = €BlackholeFeedbackFactor €r (met X dt) 62 ) (3233>

where ¢ = ¢/Uy is the speed of light in programme units. These BH variables
are therefore all stored in programme units.
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Feedback is implemented in routine eagle bhfeedback.c as follows. The
variable

Au = BlackHoleMinHeatTemp
X temp_to_u_cgs_primordial  (3.234)

critical_energy_per_unit_mass = U—;L = Au (3.235)
v
is the desired increase of specific energy of a gas particle near a BH, with Au
in cgs units, and the programme variable critical energy_per_unit_mass the
specific energy in programme units. The function temp_to_u_cgs_primordial
returns the conversion from temperature to the thermal energy, using the
mean molecular weight for primordial composition.
The code calculates the actual number of gas neighbours of a BH, as well
as the total mass of those neighbours, without kernel weighing, as (need to
determine how £ is set)

num-_ngb = Z (3.236)
J
ngb-mass = Z m; (3.237)
J
ngb_mass
==\ 2
(m) num-ngb (3:238)

The quantity (m) is the mean mass of a neighbouring gas particle — we
have seen that gas particle masses may vary over orders of magnitude when
stellar mass loss is included.

The BH builds-up an energy reservoir for feedback, (BH_Energy in Eq.?7),
and will only heat particles when it has sufficient energy to heat Black-
HoleNumberOfneighboursToHeat (an input parameter) gas neighbours. Therefore
feedback will only take place when

BH_Energy > critical _energy
= BlackHoleNumberOfneighboursToHeat
X Au x (m) . (3.239)

If this inequality is not satisfied, the BH does not perform heating, and its
energy reservoir (BH_Energy) may increase over time.
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If the BH does have sufficient energy in its reservoir, BH Energy >
critical_energy, we calculate the heating probability p per gas neighbour from

n_heat — DIPICIEY (3.240)
Ad x (m)
_ ncheat (3.241)

P= num-ngb

If the BH heats few particles, p < 1 is the probability of heating a particle.
However if the BH has a lot of energy, p can be larger than one. In that case,
we put p = 1, and heat every particle to the higher specific energy

BH_Energy

At = .
ngb_mass

(3.242)

After a heating event, we zero the energy reservoir, BH_Energy.
Important: I changed the order of feedback and accretion. Up to version
svnversion 21680, we first perform feedback, and then accretion. This has the
unwanted effect that a heated particle may next be swallowed — cancelling
out any feedback. The later versions first perform merging and accretion,
and then perform feedback.

3.6 Time stepping

3.6.1 Tim-stepping: original scheme
Active particles: kick-drift-kick scheme

Assume velocity (v), position (z) and entropy (S) and predicted entropy (S,)
are known at time ¢. A time-step starts by computing a new current time-
step At (see later for actual variables used), then steps the solution thorough
the following routines

1. calculate new time-step At.

2. kick: kick active particles over 1/2 a time step: do_first_halfstep_kick

At
P2 g 4 g 1/2 5 (3.243)

At

SrHl/Z—gn 4 gn -5 (3.244)
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Figure 3.9: Different choices for selecting how to update entropy in the
presence of radiative cooling and feedback. Black shows a case where

the cooling rate is calculated comparing Sﬁﬁl, the entropy calculated as

Suhl = gntl/2 4 ds™ L2 AL it G after an implicit cooling step, giving

dt NR 20 cool
a cooling rate %gjoll = (S™H — SuRY)/(At/2). After feedback, the entropy

is much higher and the cooling rate should be much smaller. This is illus-
trated comparing blue dashed line (with the high cooling rate) against the
green line, which uses the much smaller cooling rate computed at the higher
entropy following feedback. The entropy after the next kick will now in fact
increase (because of the low cooling rate) whereas in the old case it would
decrease.
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The entropy rate S = Sﬁﬁl/ ?4.8n | combines the non-radiative rate of
entropy change from time t"~'/2 with the rate due to cooling, evaluated

at time t".

. drift: drift all particles to current time ¢: find_next_sync_point_and_drift

Atf =t — jwicurrent ( )
z(t) =z + v Aty ( )
Up(t) =v, + a Aty (3.247)
S,(t) =5, + 5 Aty (3.248)
(3.249)

Tvicurrent — t .

Note that T is simply the last time that the particle was drifted.
Since Aty is calculated as the difference between the current time and
the last time that the particle was drifted, we can simply add v"*1/2 At
and S™H1/2 At 7 to get incremental updates to position, ‘predicted’ ve-
locity v,, and ‘predicted’ entropy S,. The ‘accelerations’ v, a and S
correspond to the last velocity, accelerations, and entropy derivative
computed.

. calculate new accelerations: compute_accelerations, a"*'/? as well as
the non-radiative rate of change of entropy, Sﬁgl/ > In hydra.c, accel-
erations are calculated using predicted values for velocity v,(t), and
entropy S,(t), as well as the current ‘drifted’ particle positions z(t).
Note that the entropy here is a predicted value, and is store in a dif-
ferent variable than the entropy S used in the previous kick.

. kick: kick active particles over second half of time step: do_second_halfstep _kick

At
Un+1/2 + an+1/2 7 (3250)

At
5

Un+1 —

Gl = gnl/2 g gt/ (3.251)

Note in particular that this uses the non-radiative rate of change of
entropy (i.e. ignores radiative heating/cooling in the entropy).
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6. cooling: eagle docooling. Calculate the cooling rate from

5 A
S™Y = do_cooling(S™, 715) (3.252)
SN > Shhin (3.253)
X Gnew _ Sn—l—l
n+1 __

S = —At/Q (3.254)
. Quew _ Sn+1/2 . .
T it M (3.255)
Sntl — gnew (3.256)
Sprt =gt (3.257)

This is I believe what we should do. However currently the time interval
used in Eqs (?77?) and (77?) is obtained from eagle_get_SPHparticle_elapsed_time,
and (when the limiter is not used), equals At (and not At/2 as it should
be). The rate of change of entropy, in Eq.(??) currently in the code is
Sl = S+l s only the radiave rate (which is why T claim we miss 1/2 a
step of shock heating in the first kick).

Incidentally this illustrates why I claim our testing is not very rigorous:
a Sod shock tube test would not show that we do not update the entropy
correctly, because we would run it without cooling (as opposed to running it
with zero cooling rate).

Passive particles

Passive particles need a predicted value of the entropy, S, (for example used
in get_pressure). Whereas active particles follow the kick-drift-kick scheme
above, passive particles only get drifted. Since Aty is calculated as the differ-
ence between the current time and the last time that the particle was drifted,
we can simply add v"+t1/2 At; and S"*1/2 At; to get incremental updates to
position, velocity, and entropy.

3.6.2 Time-stepping: suggested scheme

A proper leap-frog scheme for entropy is not possible since S is a function
of S. For the non-radiative change (as computed in hydro_force), S is in
fact not used: what is used is the pressure, which in routine get_pressure is
calculated from the predicted entropy, S,.
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Also, since the radiatice change in entropy is calculated using sub-cycling,
associating a radiative rate of change of entropy from AS/At may give erro-
neous results. The scheme below is designed to be robust.

3.6.3 Cooling tests

The following tests do not use the timestep limiter.

Test 1: Interpolation of cooling tables

This test (EAGLE_TEST_COOL=1) simply compares the cooling rate (for a
given density and redshift) for each element, as function of temperature, as
interpolated by the code, against what is in the cooling tables. Code works
well.

Test 3: cooling of box at uniform density and temperature

The uniform denity box is initiallize with a given density and temperature
and then left to cool. The cooling rate is indendent of temperature, and in
this case the anlytical solution is simply that 7" decreases linearly in time.
In the code, cooling is switched off below 7" = 10* K. As seen from Fig. ?7?,
the temperature evolution computed using EAGLE follows the analytical
solution very well. Run this test setting EAGLE_ TEST_COOL=3. This
tests the implementation of routine that evolves the thermal energy, for a
case whether there are no adiabatic chnages, nor non-adabatic changes that
are due to shocks.

Test 4: cooling through a Sod shock

This non-cosmological set-up is a shock tube, and is run with EAGLE_TEST_COOL=4.
The CoolingTest/SodCool directory contains a python script (analytic.py)
that calculates the similarity soloution discussed below, and an idl script to
compare the simulation to that solution, as well as the Config.sh and initial
conditions files. See Creasy+ 11 for details.
Initially, gas in a long tube is of uniform density and temperature. The
gas is given a velocity, so that gas at * < 0 has v, > 0 and gas at x > 0
has v, < 0: this generates a strong shock at x = 0 which propagates out.
Figure 7?7 compares the analytic solution to the EAGLE solution when the
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Figure 3.10: Comparison of cooling rate at z = 2. for gas at a given density,
between values calculated by the code (dashed lines) and rates directly from
the cooling table.
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Figure 3.11: Non-cosmological cooling of gas at uniform density and tem-
perature, with a rate which is independent of T". The analyticl solution (gas
cools linearly in time) and the EAGLE solution track each other well. In
the code, gas stops cooling below 7' = 10* K.
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gas does not cool (v = 5/3). Apart from a wall heating effect at © = 0, the
code reproduces the similarity solution well.

Figure ?7 is the case with cooling included. Again EAGLE seems to do
OK. This tests the combination of non-adiabatic (shock) and strong entropy
changes of the code.

Test 5: evolution of temperature at the mean density in cosmolog-
ical volume

Test of the evolution T'(z) at the mean density are shown in Fig. ?7. In a
test where cooling a reionization heating is applied to a gas element at the
mean density (black curve), the resulting T'(z) does as expected, and is close
to the data points of Schaye+00. Blue line is u(z) scaled to match T'(z) at
the maximum value: the blue line then follows the black line expect at high
z > 6 where the Universe is not yet very highly ionised (and hence the mean
molecular weight is still changing). Red line is the (scale) cumulative injected
thermal energy (due to H and He reionization). These curves look fine.

However the red solid circles correspond to a simulation with low og, and
corresponds to the median temperature: clearly there is an issue here: those
points should lie on the black line.

3.7 Comparison to previous code
Appendix:

Variables, their meaning, units, and scaling

This note describes the units and meaning of variables in the EAGLE version
of GADGET, both for internal code units, and those that are written to the
snapshot files, when a cosmological simulation is performed (i.e., when the
code uses comoving variables).

The Hubble constant is written as Hy(z = 0) = 100h km s™!, and a =
1/(z 4+ 1) denotes the expansion factor, with z the redshift. The subsection
name refers to the group name in the hdfb file

We will denote code variables by a hat, so x is the physical comoving
position (which has dimensions), whereas & is the corresponding code position
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Apart from wall-heating at = 0, EAGLE gets the solution (red line) right.
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Figure 3.13: Same as Fig.?? but including cooling, the blue line is the simi-
larity solution.
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Figure 3.14: Evolution of 7" at the mean density. Red curve is proportional to
the internal energy injected due to hydrogen and helium reionization. Black
(blue) curve is evolution of T'(z) (u(z)), using a test routine that calls EA-
GLECOOLINGRATE to evolve the thermal state of a parcel of gas at the mean
density. Black points with error bars are those of Schaye+00. Red points are
the T'(z) of a simulation with very low og: this tests the cosmological update
of the cooling rates: the code clearly passes this test.
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Table 3.1: Translation between input parameters and physical parameters

for star formation

process ‘ symbol ‘ name input variable default
Star formation law | Agks SF_SchmidtLawCoeff MSUNpYRpKPC | 1.5151 x 10~* Mg yr— !k
nKs SF_SchmidtLawExponent 1.4
pxks | SF_SchmidtLawHighDensThresh_ HpCM 103 hydrogen cm™?
NKs SF_SchmidtLawHighDensExponent 2
Cool-eos Peos EOS_Cool_MinPhysDens_ HpCM3 hydrogen particles 0.1 ¢
Acos EOS_Cool_MinOverDens 10
Yeos EOS_Cool_GammakEffective 1
Teos EOS_Cool_TempNorm_K 8000K
Jeans-eos Peos EOS_Jeans_MinPhysDens_HpCM hydrogen particles 10 c
Acos EOS_Jeans_MinOverDens 10
Veos EOS_Jeans_GammakEffective 4/3
Teos EOS_Jeans_TempNorm_K 8000K

(which is dimensionless). Note that the variable in the output file, x4y, can
be different from either x or z.

Definitions

The relation between physical and comoving variables is defined using a as
r=ax. (3.258)

where 7 is the physical position, and x the comoving one. This is used to
define the peculiar velocity, v,, and peculiar acceleration, a,, as

p—
P at
1d
== (avy). (3.259)

Let p and p be the physical pressure, and density, respectively. The
Eulerian equations of motion are
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1
X4 2H%x+ (X-V)x=—-=VU - — —
a
VAU =47Gp, 0, (3.260)

where V is d/dz, ¢ is the overdensity, p,o is the mean physical density at
a=1,and H = a/a. We will assume a polytropic equation of state, p = € p?,
where € is the entropy.

Units

The Units group defines the conversion from GADGET dimensionless vari-
ables into cgs units. These are read from the parameter file and copied into
the hdf5 file. At present these are

1. Lenght: U = UnitLength_in_cm
2. Mass: Uy = UnitMass_in_g
3. Velocity: Uy = UnitVelocity_in_cm_per_s
4. Energy: Uy, = Uy U.
For later use, the derived density unit U, = Upn U 3 pressure unit U, =

Up U, entropy unit, € = p/p?, U, = U, U, 7, and time unit, U; = Uy, U;l.

Constants

The units of these mathematical and physical constants are cgs. Solar abun-
dance Zgoar is the assumed solar metallicity as a mass fraction.

Header

1. Time: expansion factor a (dimensionless), with a = 1 today.
2. Redshift =z=1/a—1
3. HubbleParam = h

4. NumPartTotal: 5 integers: total number of particle of each species.
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Time, and Hubble constant

The parameter file defines h, the dimensionless Hubble constant. Several
places in the code compute

1/2

H=100kms ' Mpc " U; (Qma 4+ Q + (1 — Qp — Q) a™) "7, (3.261)

so that H(t) = hHU; ' = a/a is the Hubble constant. This can be used to
compute the timestep,

At Aa 1 R
h=tU; a H(a) (3:262)

Note that GADGET uses the expansion factor a as time variable, but in
these notes I will always use t to denote time, never expansion factor.

Particle variables

N is the number of particles. There are five particle species, PartType0 is
gas, PartType4 are stars, the others are dark matter. The number of particles
of each species can be determined from the Header variable NumPartTotal.

3.8 (Gadget equations

1. The name of the snapshot variable that contains the particle mass is
Masses(1:N):

m=Massesh™ ' Uy g
=mh Uy [g]. (3.263)

2. The name of the snapshot variable that contains the particle position
is Coordinates(3,N):

r=ax
= Coordinates x h™*a Uy, [cm]
=% x h™'aUy [cm] (3.264)

60



3. The name of the snapshot variable that contains the particle velocities
is Velocities(3,V):

Vp =ax
= Velocities x a2 Uy [cm/s]. (3.265)

d%

The internal velocity ¥ = a* h™" <

4. The name of the snapshot variable that contains the particle accelera-
tions is Acceleration(3,N):

1d

a,=——

P adt
=aX + 2H (a)ax

= Acceleration h Uz U; ' [em/s?] . (3.266)

aVp

The internal acceleration a differs for hydro and gravity. For gravity:

A A

. . MX
Agray = § G —
g .773

20
—aY (3.267)
dt
whereas for hydro
R 1 dp
Ahydro = % &
3(v-1) AV
=a”’" = . (3.268)
dt

5. The name of the snapshot variable that contains the particle density is
Density:

p=Density h*a > Uy U;* [gem ™)
=pa*h*U, [gem™?]. (3.269)

6. GADGET does not output the entropy nor the pressure, but it is
useful to know what the internal values are.
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p=pa ¥ WU, [g(ems™)?em™

e=eh> U, U," [g(ems™)?em P (gem™)77].  (3.270)

7. The name of the variable that contains the particle internal energy per
unit mass, u, is InternalEnergy.

u = InternalEnergy U2 [(cm/s)?]
—4 U‘2/ [(Cm/S)2] ' (3.271)

The internal energy w is usually computed from the entropy, u =
ep’ /(v — 1), hence during a runs one needs to first convert the co-
moving density to a physical value, p o< pa~2 which then introduces a
factor a2~V since the entropy € is a independent.

The temperature is computed from u = kgow,T/(y — 1)umpy, where
kBolt, is Boltzmann’s constant, 1 the mean molecular weight per parti-
cle, and mpy is 1/12 of the mass of a '*C Carbon nucleus.

8. The name of the variable that contains the particle potential is Poten-
tial(1:N):

GM
(I)EZ "

= Potential ' U2 [(cm/s)?]. (3.272)

9. OnEquationOfState.

Has to do with being on the effective equation of state (EoS), namely

= 0 when particle has never been on EoS
= 1 when particle is currently on EoS

= —a when particle not currently on EoS, but left EoS when expansion factor was a.
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10. IronFronSNIa Mass fraction of Iron (Iron mass over particle mass),
produced solely by super novae of type I.

11. StarFormationRate. The star formation rate (if a gas particle), or the
star formation rate of the gas particle when the star formed, for a star
particle.

12. TimeMaximumEntropy, TimeMaximumTemperature. Expansion fac-
tor when particle had its maximum entropy, and maximum tempera-
ture, respectively. (Note that temperature and entropy do not scale
with a.

13. WindFlag.

= 0 if particle has never been in a wind

= —a when particle was last in the wind at expansion factof3:273)

14. MaximumEntropy(1:N):

Maximum value of the entropy é. Physical entropy

€max = MaximumEntropy A2 U, [g(cms ™ )%em ™ (gem ™) 7],
(3.274)

Star formation implementation

Write the ags surface density, Xy, in terms of the hydrogen column density,
Ny, and hydrogen mass fraction Xz, as

IV N AP ANTE
Ygas = N X, = ( G ), (3.275)

where p is the effective pressure.
The Schmidt law is written as

ESFR ZJgaLs n
=C 3.276
Mg kpe 2 yr—1 (M@ pc—2) ( )

Combining the last two equations gives
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YSFR P n/2
=C(——~ 3.277
Mg kpe™? yr-! (G(M@ pC‘Q)Q) (8.277)
If you also assume that
by N
SR _ P (3.278)
Egas Pgas
then
. YisFR
= C as «
p pg Zgas
Pgas b as n—1
=C ]Wg (M : —2)
yr oPbC€
Pgas »f (n=1)/2
=C . 3.279
Myr (G(M@pC—Q)Q) ( )
In terms of numerical implementation this becomes
dm* Mgas p/yf (n—1)/2
=C—* 3.280
dt Myr (G(M@pc—Q)Q) ( )
or in terms of programme variables
din, _ oo DU pam Py f (pC/Cm)2)2 (n-1)/2 (3.281)
dt 8 106yr/s \GRAVITY * My /g ' '

where the quantity in () is dimensionless, and GRAVITY = 6.67 x 1078 is
Newton’s constant in cgs units.
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